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Integral Equations and Discretizations
for Waveguide Apertures

John J. Ottusch. George C. Valley. and Stephen Wandzura

Abstract— We present integral equations and their discretiza-
tions for calculating the fields radiated from arbitrarily shaped
antennas fed by cvlindrical waveguides of arbitrary cross sec-
tions. We give results for scalar fields in two dimensions with
Dirichlet and Neumann boundary conditions and for (vector)
electric and magnetic fields in three dimensions. The discretized
forms of the equations are cast in identical format for all four
cases. Feed modes can be TM. TE. or transverse electromagnetic
(TEM). A method for numerically computing the modes of an
arbitrarily shaped. cylindrical waveguide aperture is also given.

Index Terms—Aperture antennas. integral equations.

I. INTRODUCTION

UMERICAL simulation of the electromagnetic perfor-
Nmance of antennas using integral equations requires a
mathematical model of the driving sources. In contrast to
scattering cross-section computations where a distant source
creartes a plane wave in the vicinity of the scatterer. construc-
tion of an accurate source model for an antenna is nontrivial.
If a simple approach. such as a “delta-gap™ excitation [1]
1s used. the accuracy of some important antenna parameters.
such as input impedance. gain. and refiection can be seriously
compromised. even for cases in which the far-field pattern is
obtained accurately.

The purpose of this paper is twofold. First. we develop
integral equations representing exact specification of the field
emanating from an aperture of arbitrary shape with the field
entering the aperture left unconstrained and to be determined.
The exact definition of the “emanating” field is accomplished
by analysis of a translationally invariant waveguide that has
the cross section of the given aperture. In the context of
a generalized scattering problem such as a waveguide-fed
antenna. such an integral equation may serve as a boundary
condition that must be obeved inside the waveguide on any
plane normal to its axis. Second. we derive discretized forms
of the integral equations’ (using the method of moments)
that are suitable for numerical computation. As part of this
development. we give a useful interpretation of the kernel that
appears in the “waveguide integral equation.”
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" An equivalent formulation of the feed model for the elecromagnetic case
has been used previously by McGrath and Pyati [2] We. however. ry to
clarify the intent. development. and use of this formulation in the context of
a generalized method of moments discretization.

Our development is based on the assumption that the
waveguide is:

* translationally invariant in the half-space behind the aper-

ture along the axis normal to the aperture:

* terminated by a perfect absorber or is so long as to be
practically nonreflecting:

« filled with a linear. isotropic. homogeneous medium:

* enclosed by walls that are infinitely hard or infinitely soft
in the scalar scartering case or perfectly conducting in the
elecromagnetic scattering case.

The first section is devoted to finding continuous and
discretized forms of the waveguide integral equations for
scalar waves and then applving them to more general scattering
problems. These equations apply to acoustic scattering in two
or three dimensions as well as the two-dimensional (2-D)
analogues of three-dimensional (3-D) electromagnetic scat-
tering (which apply to scatterers with translational symmetry
in a direction orthogonal to the axis of the waveguide). In
the second section. we do the same for 3-D electromagnetic
scattering. The two treatments are entirely analogous. Formu-
las for the power flow out of (due to the given excitation)

,and into (due to back scattering) the waveguide are also

given in each section. In the third section. we show how the
waveguide integral equations can be extended to more general
circumstances. Prescriptions for numerically computing the
modes of cvlindrical waveguides with arbitrary cross sections
may be found in the Appendix.

II. SCALAR WAVEGUIDE EQUATIONS

A. Modes

An arbitrary field ¥(x) that satisfies the scalar Helmholtz
equation

(V2+k)u(x) =0 )

inside a waveguide aligned with the z axis. can be written
as a sum of modal components® traveling in the +% and —2
directions [3]

Y(x,.2) = Z(aneis": + bpe™ oy (x4 ).

(2

For simplicity. we will assume that no cutoff modes (i.e.. those with
3 = 0) are present. It is straightforward to amend the development 10 handle
such modes.
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Likewise. the longitudinal derivative of the field may be
written as

dux_ Lz I _.a .k -
—_— =V|aﬂe‘j"—bne ’jﬂ';—un:x_ (3)
o) - Zn
where
k .
Zn = e (4)

is the modal impedance. In these equations. an implicit ¢ 7*-*
time dependence is assumed for the fields, & = /e is
the free-space propagation constant and . and u,x_) are.
respectively. the propagation constant and tansverse field
distribution of the nth mode inside the guide. The modes are
eigensolutions to the scalar wave equation

(V2 k= B)unix.) =0 (3)

for x_ inside the waveguide aperture 11 and the Un(X_)
are constrained to satisfv the boundary conditions of the
waveguide walls when x_ is on the boundary of the aperture
OW". With proper normalization. the modes form a complete
and orthonormal set of functions over W', i.e..

Z Un (X jun(x] ) = 6(x_ - x") Completeness  (6)

and

/dX_um{X_)un('X_')=5mn Orthonormality.  (7)
1w

B. Waveguide Integral Equation

Let v°"(x_.z) denote a specified outgoing wave. =z = 0
correspond 10 the plane of the waveguide aperture. and the
rest of the waveguide be located in the half-space with = < 0.
Using the modal expansions and the completeness relation
for the modes. we can write the following expression for
L% (x_.0) in terms of the field and its longitudinal derivative
on U~

v (x_.0) = Z QnUn(X,)

1
5 2 (an +bn)un(x_)

1 Zn ik
1-5 s E(an —-bn)z—nun(x__)
1, o1 P /
= -2—L(x_:..0)r§/‘;. dx’ H{x_.x")
ouv(x’ :’)’
" (8)
0z =0
where
H(x..x )—Zéu (x_)un(x') (9)
) = -~ Zk n - n L7

For any point x on a general surface S, we may define an
independent surface field quantity

o(x) = - lim a(x) - V'v(x'): xon$

X' —x

(10)
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where nix) is the outward unit normal to < ar x. In the case
of a waveguide aperture. o simplifies to

’

ouvix’ . zh

ER (1D

ox_.0i= - x_on i1’

=0
Inserting this into (8) and dropping the spatial coordinate :.
we obtain the following integral equation on the waveguide
aperture that relates the field. its longitudinal derivative. and
the specified waveguide excitation on 11

2L‘°‘“[x_)=u~x;)—/ dx__ Hix_.x_iox . (12)
W

H(x_.x" ) is the kernel of the “square root™ of the trans-
verse wave operator in the sense that

/ dx. H(x_.x"VHix_.x") =G, ix_.x") (13
1w
where G_ obeys

(V_?_-%k"’)@_tx_.x’_']:—z‘xx‘—xi‘t (14

inside the waveguide and satisfies the boundary conditions on
the waveguide walls.

A different relation between 1. o. and the outgoing
wave is obtained if we specify 91" (x_.z)/0z instead of
O (X _.2) to write

0 (x_.0) _ ko
% —-Zanz—nun(k-)

1 . ik
5 Z(an + bn)Z—un(x.L)

1 ik
- 5 Z(an hd bn)un(x__)
10v(x . 2" 1 ) /
= = + - dx'\ H(x . .x
2 s 2/ BeaxL)
X U(x,.0) (15)
where?
ry ’ Zk ’
H(X_:.X;)Z = (16)

'Z—“un(X;)Un(x ).

Dropping the spatial coordinate z and defining o as before. we
get an alternative form for the waveguide integral equation

961_,"°“‘(x_) _ Ou(x_

)-;-/H' dx!y H(x1.x| )%(x]) (17)

0z Oz

or

Lo x.) =o(x1)~ | dx\H(x,.x\)uw(x\). (18)
oz W - - -

H(x..x' ) and H(x 1.X', ) are “inverse operators” in the
sense that

dx’, H(xo x" ) H(x',.x) = §(x ~x]).
w

19)

3Note that H(x__.x';) is not a function since the sum over all n does
not converge. Rather. like the Dirac delta “function” bix, . x! ) it is a
distribution. which. when convolved with a suitably smooth function. produces
a well-defined value.

Sy -
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Fig. 1. Antenna system composed of waveguide aperture 117 and antenna
surface S

Using (12) and (18) on the waveguide aperture M. we
can derive boundary integral equations that apply to more
general scattering cases. For example. we can write coupled
boundary integral equations for the case of a waveguide
aperture connected to a general scatterer. This is demonstrated
in the next subsection for the special cases in which the
scattering surface obeys either Dirichlet or Neumann boundary
conditions. In both cases. it is assumed that the union of the
scatterer S and waveguide aperture W~ forms a closed surface.
as indicated in Fig. 1.

C. Coupled Integral Equarions

In this section. we derive integral equations relating the
known field emanating from the waveguide aperture to an
unknown surface field (either v or o) for the generic closed
antenna system shown in Fig. 1. For Dirichlet (Neumann)
boundary conditions on S, the unknown surface field on both
S and W is chosen to be o(w).

11 Dirichlet Boundary Conditions on S: The Integral equa-
tion for the field (in the absence of an explicit incident wave)
15" [4]

1 . .
Suixe =% ds'{[a(x") - V'Gix. x")u(x")
2 sz

- Gix.x")o(x')} 20)

for x on S = W". The Helmholtz kernel G(x.x') is given by
1 (1 13 :

Gix.x") = Z.{{B-xgﬂx == ?n 2

£ in 3d

ix=x’|

3y

where Hél’ is the zeroth-order Hankel function of the

first kind. For Dirichlet boundary conditions on S (i.e..
w(x on S) = 0) we have

0= f ds'G(x.x" o (x)
Sz
—’/ ds'[a(x’) - V'G(x. x')u(x’) (22)
w
for x on S and
Lot = }{ ds'G(x. x)o (x')
Saw

ds'[a(x") - ¥/G(x. x" ) (x')

w

(23)

for x on W". Equations (2 2) and (23) along with either (12)
or (18) form a set of coupled integral equations to be solved
for w(x) on W and o(x)on Se& W, Using (12) we can

eliminate v putting the known field :*°**'x - on the left and
the unknown quantity oix: on the right

=2¢ ds'in" - V'Gx.x1jpeott x
w

=j{ds’G(x.x';mx'~—j/ ds'Gix.x 100 x’
K u

d-"H x'.x" e x"
IS8

—f ds'in” - Y'Gix.x 1
W

(REY
for r on S and
X - Qjé ds'(n’ - V/Gix.x Vi ox
W
= f ds'G(x.x")o(x"
s
/ w1 . o
+ ¢ d'[Gx.xNo(x" -~ SHix.xoix")]
W -
-j—j{ ds’(ﬁ’-\"G(,x.x')\/ ds"Hix" . x" jo(x"
W W
25
for z on W,
2) Neumann Boundarv Conditions on S: The integral

equation for ¢ (i.e. the normal derivative of the field) may
be written as [4]

%a(x) = —(A(x) - V)?{ ds'{[a(x") - V'G(x. x")]v(x")
saw

+G(x.x")o(x')} (26)

%o(x‘) = j{ ds'{[a(x) x VG(x.x')] - [A(x) x Viu(x))
2 ssw

- F*(a(x) - a(x"))G(x. x e (x")

- a(x)VG(x.x")o(x’)} Q27
for x on S 2 W". The first form is more compact (and for that
reason is employed below), the second more convenient for
numerical computation. For Neumann boundary conditions on
S (ie. o(x on S) = 0). we have

0=—(a(x)- V)/ ds'[n(x’) - V'G(x. x")y(x')

- (a(x V)/ ds'{ ) - V'G(x.x")(x")
+ G(x.x")o(x (28)
for x on S and
1 = —(n vyl d -V'G(
§a(x) = —(Aa(x) - / s'[a(x (x.x")]w(x

—(Aa(x)- V) . ds'{[A(x) - V'G(x. x')w(x'

+ G(x.x")o(x')} (29)

for x on W. Combining (28) and (29) with (18), we can
eliminate o and write the following integral equations for (x)
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in terms of the known quantity 8v:°"%(x)/8z:

Lout

1x"

2/ ds"n-VGix.x
W
=(n- \'/dcln NVGrx.x Meix”)
— (N T)/ ds'tn" - T'Gix. x Vvix’)
f/ ds’(fl-TG(x.x’))/ ds"Hix' . x"yeix" (30
W w

for r on S and

81.01."»
(e
= i'ﬁ-V)/ ds'(n’ - V'Gix. x'))ju(x’)

N

. , O
—'2/ ds'in- VGix.x')) ——(x',
w o

z

— (5 \')/ ds'(8' - T'G(x. x')u(x')
w
—%/ ds'Hix. x"juix’)
2 Jw

_/ ds’(r‘l.\‘G(x.x’))/ ds"H(x' . x"(x") (31
w w

for z on 1.

D. Discretization

While analyvtical solutions for waveguide modes are known
for a few special cross sections. in general. modes must be
computed numerically. Even when analvtical solutions exist.
it is more convenient (from a computational perspective) to
use numerical solutions because then all interacting surfaces.
whether physical or intangible (e.g. waveguide apertures). can
be treated equivalently.

Assume the waveguide aperture has been discretized into
a set of paiches that support Af basis functions f,(x).
Following the procedure given in the Appendix. we can write
approximate expressions for the N lowest waveguide modes
in terms of basis functions defined on the aperture

MM
=Y Anmfm(x). (32)
=1

In the usual method of moments fashion. we approximate
the field « and its normal derivative ¢ on the aperture as
linear combinations of the basis functions with unknowns
coefficients S}t and I

J\I

U(X) & Y Sh fm(X) (33)
m=]1
M

o(x) = >IN fm(x). (34)
m=1

We also approximate H(x.x’) as a truncated sum over the N
computed modes

(35)
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Then. by substituting (32}~33) into (12). and applving the
testing operator [ dsf;(x}- to both sides of the resultant
equation. we arrive at the discretized form of (12)

oW o N WGW (361
where
V,V‘b = / dst® X0 fix (37
w
N = /stf,(‘x)f](x" (37b)
= /'ds/‘ds'f,zx)H(x.x'vf_,px"l
= [(‘_:1_\"")“7_\AN“');,; (370
and
Amn = %Emn. (38)

A similar procedure produces the discretized form of (18).
namely

2T = N X (39
where
~ . out
= ‘/ dea; (x)£:(x) (402)
X =/ dq/ ds' f (X H{x.x") fix')
= [(AN™YT 4\“‘) (400)
and
_\ _ Zké - (‘\—1) (41)
“Aimn = Zn mn = - mn

Equations (12) and (18) and their discretized equivalents
(36) and (39) may be viewed as nonlocal inhomogeneous
boundary conditions that must be obeyed on the waveguide
aperure. They are nonlocal because the “surface impedance”
terms X" and X™ relate the field at one point on the aperture
to its derivative not just at the same point, but everywhere on
the aperture. and vice versa. The equations are inhomogeneous
if excitations "™ and T"" are nonzero.

The discretized forms of the coupled integral equations
for Dirichiet boundary conditions on S are obtained by first
approximating the source on S in terms of basis functions as

2 o frm (%)

then substituting this approximation and the approximate ex-
pressions for ¥(x), o(x), and H(x..x') on W into (22)
and (23) and finally applying the testing function operator
f fsew ds fi(x)- to both sides. The result in block matrix form

(42)

_2}/5“ (Arﬂ' ) -1 'VW'
‘f“.

f: ZSS ZSH'

+ YSH'(N'H')—IXw:' liIS
ZH'S

Zww _1xi IW] 43)
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where .
=/ds/ ds'f,—(x)(fl/-T'G(x.x’))fjtx") (44)
s W

233 = / ds/ds/f,-(x)G(x.x’)fj(x\ (45)
a 2
with § or W replacing o and 3.
An analogous result is obtained for the case of Neumann
boundary conditions on S. We approximate the source on S
as

\/

(46)

o
S
rr

substitute this expression and the approximate expressions for
wix). o(x). and H(x_..x/,)on W into (28) and (29) and then
apply the testing operator. The result is
2}'51‘['(]\,‘1!' )—1 f'“‘
)
{ 755

Z.SH' - }j’SH' J\f“' -1vu 5
Sws e VO)TX ng] @7

ARG g
where

SV = /ds/ ds' fi(x)(h - VG(x.x')) f;(x)

Z.'f;j /ds/ds
x ¥ fi(x")! Lz(ﬂ(x ) - A(xX)) fi(x)G(x. x") £;(x')]
49)

(48)

n(x) x VG(x.x")] - [a(x)

with § or W’ replacing o and 8.

E. Modal Decomposition

In preparation for computing the power flowing across the
waveguide aperture in either direction. it is useful to write v
and 6v/0z in terms of modes propagating in either direction.

By employing the completeness relation for the modes we
can decompose the field on W~ into a sum over modes as

U(x) = nun(x) (50)

where

m=/a%mmm (51)
"

is the amplitude of the nth mode contained in ¥(x). It is useful
to further decompose w(x) into its incoming and outgoing
components

U(x) = ¥n(x) +

Since the discretized representation of ¥ (x) is given by
VW, we may write the discretized form of nout as

out Y‘ Anm] -H.

O (x). (52)

(53)

Using (12) to eliminate ©*(X ). we armive at the discretized form

of nm
7 n_ Z Al 1 RIS

Similarly. we may decompose the longitudinal derivative of
the field as

A AL (34)

ouix} ce
= _V,,nur (55
where
X <
77,,:/ dsun (X (56)
W <

Then. using
fv(x) Ovin(x)  Greut(x) .
5= 8 & ©n

and (18). we can write 72" and 7" in discretized form as

~out — Z 4nm‘ W

(58

and

H SH ) (59)

Z 4nm\1 W

F. Power
The 'time-averaged power-flow density vector (the scalar
equivalent to the Poynting vector) is 3]

(S(x)) = lRe{zc“: (x)Ve(x)")]

(60)

where ¢ is a constant.

The total power flowing across the waveguide aperture in
the 2 direction is made up of an incoming part associated
with the incoming parts of v and 9+/3z and an outgoing part
associated with the outgoing parts of ' and 9¢'/8z. The total
power exiting (entering) the waveguide aperture is given by

Po= [ ds(S°(x) %)
w
e (x)*

1 ; (o3
= 5‘/‘; dsRe[zcmL (X)T

for a = out (in). This integral is most conveniently evaluated
by decomposing ¥® and 8v°/8z into their modal compo-
nents. The reason is that since the modes are orthogonal, the
power in the sum over modes is equal to the sum of the powers
in each mode.

The amplitude of the nth outgoing (incoming) mode con-
tained in ¥(x) is n3" (ni*). Therefore, the time- -averaged
power exmno (entering) the waveguide aperture is

(61)

(62)

for o = out (in), where n,, is the largest value of n for which
B is real. We exclude modes with imaginary propagation




=2

ieda

constants since such modes do not transport anv power into
or out of the guide on average.

The amplitude of the nth outgoing (incoming) mode con-
tained in dv /0= is 72 (7). Therefore. the time-averaged
power exiting (entering) the waveguide aperture is

Mmax l=a ’ 2

= c—' Z .77 (63)

for o = out (in).

1) Acoustic Waves: If v is the velocity potential. ie.. v =
V. and g is the mass density. then the constant ¢ in (60) is
given by

c=p (64)

Furthermore. the acoustic impedance [5] is related to our
modal impedance by

Z:coustic = %pzn. (63)

2 Elecrromagnetic Waves in Two Dimensions: Suppose a
waveguide whose axis is parallel to Z is also translationally
invariant in the ¥ direction. ie.. the waveguide consists of
a pair of half-infinite plates parallel to the yz plane. When
a geometry is translationally invariant in one direction. the
elecromagnetic scattering problem can be decoupled into
two independent problems. each of which is isomorphic to
a 2-D scalar scamering problem with a different boundary
condition. If the 3-D surfaces are perfectly conducting. the
boundary conditions for the corresponding scalar fields on
the corresponding 2-D surfaces become either Dirichlet or
Neumann.

Solutions to the scalar waveguide problem with Dirich-
let boundary conditions inside the waveguide correspond to
solutions to the electromagnetic waveguide problem with
exclusively TE modes inside the waveguide according to
Hiz)= ol ))‘c z

lwp

E(x) = v{z)x. DirichletTE  (66)
and solutions to the scalar waveguide problem with Neu-
mann boundary conditions inside the waveguide correspond
to solutions to the electromagnetic waveguide problem with
exclusively TM modes inside the waveguide according to
R . y_ol), o
Hix) = v(z)x. E(z)= T IXX Neumann/TM. (67)
Note how the correspondence between TM or TE polar-
ization and Dirichiet or Neumann boundary conditions in the
waveguide mode case differs from the correspondence between
TM or TE polarization and Dirichlet or Neumann boundary
conditions in the case of scattering from perfect conductors.
On a perfect conductor we associate TM- -polarized electromag-
netic scattering with solutions to the scalar scattering problem
with Dirichlet boundary conditions according to

22) o i DirichletT™

wu

E(x) =¢(z)y. H(z) = (68)
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and we associate TE-polarized electromagnetic scattering with
solutions to the scalar scattering problem with Neumann
boundary conditions according to

o . ..
Eiri= —nxy NeumannTE (69

1€
where ¥ is the direction of translational invariance and n is
the ourward surface normal. Therefore. the waveguide-excited
electromagnetic scattering problem with TM (TE) polarizauon
in which all the scartering surfaces are perfect conductors. is
equivalent to the waveguide-excited scalar problem. in which
Neumann (Dirichlet) boundary conditions hold on the inner
walls of the waveguide and Dirichlet (Neumann' boundary
conditions hold on all the surfaces of all the scatterers.
For electromagnetic waves in two dimensions. the constant

¢ in (60) is given by
e { ~  DirichlevTE
. —= Neumann/TM
where 4 and ¢ are appropriate to the material inside the guide.

Hix =uviry.

(70)

III. ELECTROMAGNETIC WAVEGUIDE EQUATIONS

A. Modes

The electric and magnetic fields inside a waveguide with
perfectly conducting walls can be decomposed into modal
components just as the field and its normal derivative were in
the scalar case. The essential difference is that now there are
three distinct categories of modal fields. namely TM. TE. and
transverse electromagnetic (TEM): each is a vector function
rather than scalar function. For our purposes. it is sufficient
Q' consider only the transverse components of the electric
and magnetic fields. Assuming the guide is uniformly filled
with a nondissipative medium having dielectric constant ¢ and
magnetic permeability u. we may write* [6]

Ei(x:.2) =) (ane™ " +bre™ ¥ hun(x) (71)

(72)
where the modal impedance Z,, is given by
Im 37‘ for n € TM modes
Z,=,/Ex{1. forneTEM modes (73)
¢ Ji for n € TE modes.

The modes are the eigensolutions to the transverse Helmholtz
equation

(V3 + k% = B2)un(x1) =0 (74)
for x_ inside the waveguide aperture " and u,(x_) con-
strained by the perfect electrical conductor boundary condition

on 9", With proper normalization, the modes form a complete

4 As in the scalar case, cutoff modes are neglected.

5g (x —x'}) is a tensor distribution. which. for any vector-valued surface
functions f(x) and gix ) on 11" obeys

/ ds'fix) & (x = x")-g(x") = fix) - g(x).
w
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and orthonormal set of functions over 11", ie..

Zun(x_ Maix =8 ix_ —-x"°

r .

n
Z(i XUndX_MNZ X up(x’ ) =& (x_ —x
n

Completeness® (75)

and
AX_Upm{X_i-uplX_ 1t = &y Orthonormality.  (76)
" .
B. Compuration of Vector Modes from Scalar Functions

The T™M and TE modes can be deduced from the solutions
to the scalar Helmholtz equation on ¥~ with Dirichlet and
Neumann boundarv conditions. respectively. on 9" [6). The
TM mode corresponding to the nth scalar waveguide mode
¥n{X_) obeying Dirichlet boundary conditions on 81 is

v V_ealxs)

un(x‘) =

VE -3

and the TE mode corresponding to the nth scalar waveguide

mode vn(x_ ) obeying Neumann boundary conditions on 91
is

amn

C_zXx NV iwn(x.)

-\/k’ - 3;1

u,(x

TEM modes are possible if and only if W~ is multiply
connected. in which case they are related to solutions to the
electrostatic potential problem on W". The TEM mode corre-
sponding to the solution (,{xX) to the electrostatic potential
problem on W with all except the nth boundary at zero
potential is given by
(79)
The scale factor should be chosen to enforce orthonormality
for the TEM modes. This amounts to assigning a particular

value 10 the otherwise arbitrary potential on the nth boundary.
For all TEM modes. 3, = k.

Un(xy) x V_{nix).

C. Waveguide Integral Equation

Let E°*(x_.z) be the transverse component of electric
field for a specified outgoing wave. Using the modal expan-
sions and the first completeness relation for the modes. we can
write the following expression for ES**(x_..0) in terms of the
transverse components of the electric and magnetic fields on
W

E2(x1.0) = ) anun(x.)
- %;(an + b )in(x.)

1 1
+ 3 ZZn(an - bn)Z—un(x_)

n

T2
(2 x H.(x

- 1B (x..0 - 1/ dx H (x..x )
w

,_\
=

where the dvad

H(_x_.x'_;zz:Znun:x‘ U, X (81
n

1s the analogue of the scalar function Hix_.x' . Dropping
the spatial coordinate =. we get the following expression for
the waveguide integral equation on 11", which relates the
ransverse components of the electric field. the magnetic field.
and the specified electric field waveguide excitation on 11™:

2EM(x_ V=E_(x_i— / dx’ H (x_.x
-z x H_(xi“)‘;. (821

Defining equivalent electric and magnetic currents on 11~ by
Jx.)=zx H_(x_ (83)
Mx_l=-z2xE_(x_) (84H

allows us to write the waveguide integral equation in terms of
equivalent currents as

2B (x:) =2 x M(x.) _/ dx’, H (x_.x_)-J(xL).
w

(85)
s specified instead of E°*'(x ..z}, we may

—_

If Ho" (x_. )

write
Ho-u!(x_L.O) = an E_i X un(x;)
1 ‘o 4 b 1. )
= EZW” + n)ZZ X Up (%)
1 1

+3 —Z:(an—bn)ixun(x;)

= lH;(xJ_.O)—:—l/ dx'. H (x,.x")
2 2 Ji - -

(2 x EL(x,.0)) (86)

where the dyad

H(x:.x))=3" Zl—(é X un(x1))(2 X un(xL)) (87

n

is the analogue of the scalar distribution H(x . x', ). Dropping
the spatial coordinate z, we get an alternative form of the
waveguide integral equation

-

ZHO () = () + [ ax), B (xs,x))
W
(2 x EL(x,)) ()

or in terms of equivalent currents

2HI"(x1) = -2 x J1(xL) —/ dx’, H (x;.x")
w

TML(x]). (89)

Equations (85) and (89) are the electromagnetic counterparts
of the scalar waveguide integral equations given in (12) and
(18).
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D. Discretization

As stated above. the TM and TE vector modes on W~ are
derivable from the scalar modes on ¥~ with Dirichlet and
Neumann boundary conditions on 917", respectively. and the
TEM vector modes (if any) are derivable from the solutions to
the electrostatic potential problem on 1". One can compute ap-
proximate solutions for the scalar modes and the electrostatic
potential by putting scalar basis functions on 1~ and following
the procedure given in the Appendix. Once this has been
accomplished. one has to choose between keeping the repre-
sentation of the modes in terms of the scalar discretization or
converting it to an equivalent vector discretization. If the scalar
discretization is kept on the aperture. specialized code must
be written 1o handle interactions with the waveguide aperture.
On the other hand. if the waveguide modes are converted to
a vector discretization early on. then the interactions between
the various scattering surfaces. whether physical or waveguide
aperture. can be handled in a consistent fashion. i.e.. entirely
in terms of vector basis functions. For computations involving
more than just the waveguide alone. we find the later choice
1o be the simplest and cleanest to implement.

If we discretize the electric current J (x.) and magnetic
current Mix_) on W in terms of M vector basis functions
fm(x_) using

A

Jix_ )~ Z N fx_) (90)
m=1
Mo

M(x_)x Y SH(fa(x_) x 2) (91)
m=1

we may write the first waveguide integral equation (85) in its
discretized form as

QI-H' — ‘\—H'SH‘ _ X—H'IH' (97)
where
v = / dx_E°"(x_)-f,(x_) (93a)
W
N2 / dx_f.ix.) f(x_) (93b)
w

X _/ dx_/ dx'fi(x.) H (x_.x) £,x, )
"w JW

= [(BN")TA(BNY))],, (93c)

and
Un(X) = Y Brnfa(x) (94)
Ar'nn = Znémn- (95)

We get the elements of B,,,, by computing inner products of
the vector basis functions with gradients of the scalar basis
functions. For example. if u,, corresponds to a TM mode. it
is clear from (32), (77), and (94) and the definition of NW
that the entries in the mth row of B are given by

1
an B y—————— Am / dX__V_‘ (X_
VE? = 32 %: 7 Jw hx)

(X )N (96)

NOVEMBER (o

Similarly. the discretized form of the second waveguide nte-
gral equation (89) becomes

.7{-”' — \-H'Il'.' _ \‘—H':\'. (9,
where
1 =/ ax_Hx_ - if x_'»z (98a
w
‘:/ a'x_/ dx” fix_ .\iv»H'x_.x;
’ w 18
(X ox 2
=[(BN"TLBNY (98b)
and
. 1 . .
Amr. = z_cmn = \’-\ “imn- (99’

E. Coupled Integral Equations in the Perfect Conductor Case

* Suppose the waveguide 11" is the primary source of radiation
for a general antenna problem in which all other scartering
surfaces S may be treated as perfect conductors. If there are
no other sources. the electric field integral equation (EFIE) for
xonS=Wis[7)

0= —%ﬁ(x) x M(x) —‘j{ ds’(z'.uu (I -‘-é\“'\")
Szw k=

b L

X Gx.x") - J(x) = V'Gix. x') x M(x’)J (100

tan

The tangential component of the electric field vanishes on a
perfect conductor: hence. M = 0 on S. At this point, we could
rewrite the above equation in the separate forms appropriate
tox on S and x on W and eliminate M on W’ by means
of (85). thereby obtaining a set of coupled integral equations
for the fields on S and V. just as we did in the scalar case.
Then we could convert them to discretized form. Alternatively.
we could discretize (100) as it stands. eliminate the unknown
equivalent magnetic current amplitudes on W using (92) and
achieve the discretized form directly. For brevity, we follow
the latter approach.

A discretized version of (100) in block matrix form is

. . IS

0 255 ZSH }'S” .
{0} = [Zu's ZWW 1A I: (101)

2 s
where
Z:;j = zluu/ ds/ ds'f? (x) - (I +Z:15V'V'> G(x.x")
a 3

(X (102)

)

J

yod = / ds [ a5 () (VG x) x (£8(x¢) x i)
(103)

with S or W replacing a and 3 and IS representing the block
of unknown current amplitudes on S. which is related to the
electric current J on S by

I(x) = Y ISfn(x). (104)

Rewriting (92) as

ST = (NI W L (W (105)
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we can eliminate the block of unknowns S" in favor of J*
to obtain the discretized version of (100) in its simplest block
form

'_-‘_)}'5“'(}\'“' )nl"U' 1
l'ﬂ' ‘#

ZSH' - }'S“'(_\'H' )—1} FIS

|'255 1
ZH'H' _ %.Y“. 5]“‘

= LZ“VS J (106)

F. Modal Decomposition

By employing the first completeness relation for the modes.
we can decompose the transverse part of the electric field into
a sum over modes as

E_(x)= Zn,,un(x‘) (107)

where

Nn =/ dsu,(x)-E_(x) (108)
u

is the amplitude of the nth mode contained in E_ (x). It is

useful to further decompose E (x) into its incoming and

outgoing components

E_(x)=E"(x) + E2*(x). (109)
Since the discretization of ES**(x) is given by 1", we may
write the discretized form of 72"t as

M= At (110)
m

Using (85) 1o eliminate E. (x), we arrive at the discretized
form of 7"

m= D A (V2 XTI, (111)
Similarly, by employing the second completeness relation

for the modes, we may decompose the transverse part of the
magnetic field as

H_(x) = fin(2 x un(x)) (112)
where
in= [ dsxwb) HoGo. i)
Then. using
H_ (x) = H(x) + H3"(x) (114)

and (89). we can write 7j2°* and 7" in discretized form as

A== > Apm VW (115)

and

M= = A (VM XVSY) e

G. Power

The time-averaged power-flow-densiny vector Povnung
vector) 1s [6]

1 .
(SlX)}:;Re{E_vx > H_ix". (117

The total power flowing across the waveguide aperture 1n the
Z direction is made up of an incoming part associated with the
incoming parts of E_ and H_ and an outgoing part associated
with the outgoing parts of E_ and H_. The total power exiting
(entering) the waveguide aperture is given by

pe =/ delS% (x- 2
I

1 j— .-
= - dsRe’E® x: x H*x'"! (118)
2w T - ’

for a = out (in). This integral is most conveniently evaluated
by decomposing E2 and H® into their modal components.
since the modes are orthogonal and the power in the sum over
modes is equal to the sum of the powers in each mode.

The amplitude of the nth outgoing (incoming) mode con-
tained in E; (x) is 7% (n!*). Therefore. the time-averaged

power exiting (entering) the waveguide aperture is

(119

for o = out (in) where np,y is the largest value of n for which
3, is real. We exclude modes with imaginarv propagation
constants since such modes do not transport any power into
or out of the guide on average.

The amplitude of the nth outgoing (incoming) mode con-
tained in H_ is 73" (7}"). Therefore. the time-averaged power
exiting (entering) the waveguide aperture is
X Zalig)’
pe=y
2

n

(120)

for @ = out (in).

IV. EXTENSIONS

Up to this point. we have assumed that all energy coupled
into incoming traveling modes is completely absorbed. It is
possible (at the cost of some extra complication) to relax this
assumption. as we now demonstrate for scalar scattering.

Suppose a uniform waveguide is terminated after length L
by a wall (oriented perpendicular to the axis of the guide)
whose reflectivity for the mth waveguide mode is r,,. For the
time being, assume no independent sources are located inside
the guide. Every mode that enters with amplitude b,,, exits with
amplitude a, = 1,52}, ie., if ¥7(x) = > bnua(x)
comes in, then ¥°™(x) = ¥ r,e?2Lb,u,(x) goes out.
This expression for 1/°%*(x) can be rewritten as

¥ (x) = / ds' R(x,x")i'"(x) (121)
W

where
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After discretization. (121) becomes
N gout = (ANWIT R4\ i (123)
where R is a diagonal reflectivity matrix whose elements are

R, =re?%Le, (124)

A boundary condition relating ¢ and o on 1" can be obtained
by applying the operator f,;. ds'ié1x.x"i = Rix.x'}}- to both
sides of (12) and using (52). The result is

/ ds'{8ix —x'3 — R(x.x'))/ ds"Hix'.x"o(x")
w W

= / ds'téix.x"n = Rix.x"Nueix’) (125)
Ju
or in discretized form
L\'“' - R)(‘\'H')—l‘x'u'IH' - (_/\.“' — R)SU (126)

The discretized relation takes a particularly simple and
appealing form if: 1) the basis functions used on 1~ are
orthonormal in which case ' = 1 and 2) if as many modes
are computed as there are basis functions on " in which case
AT 4 = 1. Then (126) is equivalent to

TYXWW = oW (127)
where
T;; = [ATt4],; (128)
and
tn = i%:—:-ém (129)

is the diagonal transmission matrix giving the amplitude
transmission of each mode at the waveguide aperture.

It is easy to modify these relations to allow for a specified
outgoing wave. Suppose the field v'SPe¢{x) is specified as being
emitted from the aperture in addition to the reflected wave. Le.
COX) = P x) + T x). We use v™f(x) here to refer
to the quantity on the left side of (121). The result is

/ ds'(6{x — x') + H(x.x/))/ ds"H(x".x")a(x")
1% u
- / ds'(&(x.%') = Rix. X'))i:(x') = 20 (x). (130)
W

Its discretized form
— (.‘\-H' _ R)SH' _ (J\,’H' + R)(.‘\"”')_14X-u.11v
(13D

21/ spec

is the obvious analog to (36) and reduces to it for R — 0.

Even more generally. one can imagine the situation in
which each incoming mode can be scattered into one or more
outgoing modes. Any number of practical effects (such as
nonuniformities in the cross section or imperfect termination)
could cause this to happen. In such a case, the reflectivity
matrix R contains the amplitude for every mode to scatter
into every other mode and is no longer diagonal.

Analogous results obtain for the alternative form of the
scalar waveguide boundary condition and for the vector cases.

V. SUMMARY

As the previous discussion illustrates. the equations thar
describe scattering interactions with waveguides can be pu:
into simple forms that are common to scalar scattening and
vector scantering. For example. the boundany condition on a
waveguide aperture mayv be written in both cases as

AW o NI i

or

2‘“-“' - ‘\vH‘]H‘ _ _\-'”‘S'W. (133)
In the scalar case. the unknown amplitudes I'' and S'W
are related to the field v and its longitudinal derivative -~
according to (33) and (34): the matrices V"', ' and 1V
and the vectors 17" and 1™ are given by (37) and (40).
In the vector case. the unknown amplitudes /"' and &'
are related to the equivalent electric and magnetic currents
J and M. according to (90 and (91): the matrices N, X'V,
and X" and the vectors " and T are given by (93)
and (98). The discretized equations for scalar scattering when
W obeys the waveguide boundarv condition and S obeys
Dirichlet boundary conditions [see (43)] are also identical
to the equations for vector scattering when 1~ obevs the
waveguide boundary condition and S is perfectly conducting
[see (106)]. The commonality extends to the expressions for
power transport into and out of the waveguide as well.

APPENDIX

Construction of the X and X matrices that appear in the
discretized expressions for the waveguide boundary condition
requires an approximate representation of the eigenmodes in
terms of basis functions on patches covering the waveguide
aperture as well as the eigenvalues associated with these eigen-
modes. For a few geometries such as rectangular waveguide
and coaxial waveguide. complete analytical solutions for the
eigenmodes are known. In such cases. it is a simple matter
to calculate the projection of a given eigenmode onto the set
of basis functions. In the general case, an eigenvalue equation
must be constructed for computing the modes.

In this Appendix we describe a means for computing the
modes of cylindrical waveguides of arbitrary cross section.
There are three subsections. The first and second subsections
describe methods for numerically solving the scalar Helmholtz
equation for the waveguide modes when the waveguide walls
obey either Dirichlet or Neumnann boundary conditions. respec-
tively. The third subsection describes a method for numerically
solving the scalar Laplace equation for the electrostatic poten-
tial of a multiply-connected cylindrical waveguide, all but one
of whose surfaces is held at zero potential.

The Helmholtz modes are directly applicable to scalar prob-
lems such as acoustic radiation and scattering. The Helmholtz
and Laplace modes are applicable to electromagnetic radiation
and scattering problems in that the TM and TE modes can
be deduced from the scalar Helmholtz modes with Dirichiet
and Neumann boundary conditions. respectively, and the TEM
modes are derivable from the scalar Laplace modes. The
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correspondence is described further in Section II-B of the
main text.

We will assume the availability of scalar basis functions that
are continuous across patch boundaries. A simple example of
such a basis function is a function that spans two triangular
patches sharing 2 common edge and whose value goes linearly
from unity on the common edge to zero at the opposing
vertces. The extension of continuous scalar basis functions
to higher order polvnomials in the surface parameterization
results in three types of basis functions that may be classified
according to whether they span two patches that share a
common edge. span multiple patches that share a common
vertex. or have single patch support. Basis functions of the first
variety go to zero at the opposing vertices and are nonzero on
the common edge: basis functions of the second variety go to
zero on all edges not touching the central vertex (where they
are nonzero): basis functions of the third variety are zero on
the boundary of a patch and nonzero in its interior.

A. Scalar Helmholt- Modes

1) Dirichlet Boundary Conditions on 9W'- Operating  on
both sides of (5) by fj;- dx_ frm(x_) tums it into an integral
equation. which may be written as

-—/'dx-fm(x_)(\—'_r_'V._‘_Un(x_))

= (=3 [ dx fmlxpunx). (34
v

Integrating the lefi-hand side by parts and applying Gauss’
theorem to convert one of the resulting surface integrals into
a boundary integral, we get

/de'fm 2) - Vioun(x_)
¢ ()i T un(xs)
on

- (k"’—ﬁﬁ)/'defm(x_;.)un(x_L) (135)

where €. (x,) is the unit edge normal to W at x,. The
unit edge normal is in the plane of W~ and points into the
waveguide wall.

The Dirichlet boundary condition demands that up(x. €
OW) = 0. If we expand the modes un In a set of basis
functlons fm that are continuous and vanish on the boundary
of 11",

= Z Anm frm(x1) (136)

then the boundary integral term vanishes and (135) becomes
a generalized eigenvalue equation for the mode coefficients

> Moo Ay = (K2~ 82 S N A (137)

where

N = / 4% (%) for (%) (138)
1w

My: = / G2V fm(X.) ¥ frr(x.).  (139)
PALS

2) Neumann Boundarv Conditions on 3'1": The Neumann
boundary condition demands that fe_ - V_iupix_ 2ol =
0. If we had basis functions whose values were nonzero on
the boundary but whose edge derivatives vanished on the
boundary. we could construct the modes directly from them.
Just as we did in the Dirichlet case. Since we do not. we need
10 augment our usual set of basis functions on the interior of
W’ with extra basis functions associated w ith the boundary of
W". Edge-based basis functions supported on the patch pairs
(one each from S and 117) that share a common edge on 9I”
comprise this set.

The generalized eigenvalue equation again derives from
(135) and (136). In this case. however. the unknown coeffi-
cients A,,, also need to obey the added constraint that the edge
derivative of each eigenmode must vanish on the boundary. We
may write this constraint in integral form as

}x[ dlé; (x_ ) V_up(x_'=0 (1400
an

which. after substituting the discretized approximation for u,,.
becomes

ZcmAm =0 (141

where
Cm E/ dlé_(x_) N _ frm(x_). (142)
o’

Thus. we seek solutions to the eigenvalue equation

Z( \Imf'r‘ - me ) nm’ — kz - ‘33) ZA-mm'Anm

" (143)
where

Lo = f dlfm(XL)(6_(X) Vo fr(x.))  (144)
o1

and the matrices A and N are defined as in the Dirichlet case.
subject to the constraint given by (141).

We can subsume the constraint information directly into
the eigenvalue equation by use of the projection operator P
defined by

P=1-CcT(ccTy-ic (145)
where C is given above and 1 represents the identity marrix of
the proper dimensionality. P has the property that it reproduces
vectors 1 that obey Cz = 0 and it annihilates vectors that
do not. P also has the property that the vectors z that
simultaneously obey the eigenvalue equation Qz = Az and
the constraint equation Cz = 0, are the same vectors that
obey the eigenvalue equation

PQPz = Az. (146)

Applying this to (143), we obtain the following the generalized
eigenvalue equation for Neumann boundary conditions:

D PNTHM~L)P] Ay = (- B2) Anm. (147)
Rows of 4 (i.e., eigenvectors) corresponding to eigenmodes
that do not obey the constraint will vanish (to numerical
precision) when left multiplied by P. All such eigenmodes
and eigenvectors should be discarded.




B. Scalar Laplace Modes

We seek solutions u,(x_) that obey the Laplace equation

Clun(x =0 (148)

inside 1" and vanish on all boundaries of 1~ except one
(call it OW7,). where we may arbitrarily set it to unity. Since
our basis functions vanish on the boundary. we need to
construct a special function v,(X_) that is continuous and
evaluates to unity on OW7,. For example. given trangular
patches parameterized by the three (nonindependent) triangle
coordinates u;. u». and us. we could take v, = 0 on all
paiches that are not in contact with the boundary. v, = u,
on all patches that have the vertex u, = 1 on the boundary.
and v, = 1 — u; on all patches that have edge u, = 0 on the
boundary. Then we want to approximately solve

Vi vn{x_ )~ Z Anm’fm’(x;) =0 (149)

Applying the operator [ dx_ fm(x_ ) to both sides and inte-
grating the resulting equation by parts produces the following
linear equation for the basis function coefficients Anm: for the
potential function associated with the nth boundary:

Y.\fmm,Am,:/ dxX_N_fm(z.) S tn(z_) (150)
- Ww

where A is as defined in (139).
To make normalized TEM modes out of these Laplace
modes. we need them to obey

1=/“. dx_up{z_.)-u,(r.)
=/ dX_N  un(z-)- Y iun(zr_)
1"
=/ dx_v__'_ . (u,,(.‘r_-_)v;un(l'_;))
W
—/ dx. V2 un(zL)
-
:f dlun(xl)(é;(x;)'V..Un(x;))
ow’
(15D

:/ dl(éL(XA)‘vLun(x_'))
an,

which means the coefficients of the discretized representation
of u, must be scaled to make

1=/m dles(x1) V(> Apm frmr(x1)

=Z-4nm’/ cdlé(x2) Vo fm(x).  (152)

au’,
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Numerical Solution of 2-D Scattering
Problems Using High-Order Methods

Lisa R. Hamilton. John J. Ottusch. Mark A. Stalzer. R. Steven Turley. Senior Member. IEEE.
John L. Visher. and Stephen M. Wandzura

Abstract—We demonstrate that a method of moments scatter-
ing code employing high-order methods can compute accurate
values for the scattering cross section of a smooth body more
efficiently than a scattering code employing standard low-order
methods. Use of a high-order code also makes it practical to
provide meaningful accuracy estimates for computed solutions.

Index Terms— Boundary integral equation. electromagnetic
scattering. high-order numerical method. method of moments.

I. INTRODUCTION

common misconception about method of moments solu-
Ations to scatiering problems is that they cannot produce
results accurate to more than a few decimal places. Such a
limitation cannot be fundamental. The method of moments
technique results from discretizing an integral formulation of
the wave equation. which. in its continuous form. is exact. We
expect that the solution to the discretized integral equation will
converge to the solution of the continuous integral equation in
the limit as the discretization scale size is reduced to zero. if
finite precision effects are negligible.

The problem with achieving high accuracy is not a fun-
damental one but rather a practical one. and it stems from
the almost universal use of low-order numerical methods in
scattering codes. Low-order numerical methods. while simpler
to implement. suffer from the fact that the computer resources
(e.g.. memory and CPU time) required to achieve a given
solution accuracy grow rapidly as the accuracy requirement
increases. Even for scatterers only a few wavelengths in size.
the computer resources required to compute cross sections
to more than a few digits of accuracy may be excessive.
High-order methods are specifically designed to overcome
such limitations by reducing the incremental cost of accuracy
improvements. '

FastScat™ is a general purpose. method of moments scatter-
ing code [1] developed at Hughes Research Laboratories (now
HRL Laboratories) that employs high-order methods in its
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current basis functions. quadratures. and geometry description.
The focus of this paper is on the current basis functions and
how they influence the convergence rate of computed cross
sections for two dimensional (2-D) scattering problems. We
will demonstrate that high-order methods make it practical to
achieve solution accuracies limited only by machine precision,
Such a demonstration is not merely of academic interest.
High accuracies at intermediate stages of the calculation are
sometimes required to achieve even engineering accuracies in
the final result. Furthermore. the ability to obtain accuracy
improvements at relatively low cost has the added benefit
that it becomes possible to obtain meaningful estimates of the
accuracy of a computed solution [2). Without some estimate
of its accuracy. a computed solution is of limited usefulness.

II. SCALAR INTEGRAL EQUATIONS

The electromagnetic scattering problem for a three-
dimensional (3-D) scatterer that is translationally invariant in
one direction can be decoupled into two independent problems.
each of which is isomorphic to a two dimensional scalar
scatering problem with a different boundarv condition. In the
TM case. the incident electric field is polarized parallel to the
axis of symmetry: in the TE case. it is the incident magnetic
field. The boundary conditions for the 2-D scalar scattering
problem corresponding to a perfect electrical conductor (PEC)
in 3-D are Dirichlet for TM polarization and Neumann for
TE polarization.

For the TM polarization case ['(z’ on C) = 0]. the electric
field integral equation for PEC boundary conditions is

C,‘,inC(I) — _}{ dr G(:z:.g:')n’(z’) (1)
(&

where ¢'™ is the incident field and « is the surface charge
density. It is defined as the normal derivative of the total field
¢ on the surface. i.e..

o(z') = —n' - V(') (2)

where 2’ is the outward normal to the scattering surface at
z’. The integral is taken around the contour C given by
the intersection of the 3-D scattering surface and a plane
perpendicular to the axis of symmetry. The kernel G is the
Green function of the Helmholtz wave equation in 2-D, namely

Glz.7') = iHé“(klz-x/D (3)
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where H{'' is the zeroth-order Hankel function of the first
kind and k is the wavenumber of the incident field. Similarly.
for the TE polarization case [otz’ on ("'} = 0. the electric
field integral equation is

—n-Vo"(z) = (n-V) 7( dl'(n" - V'Giz.z'))eiz'). (9
Jc
The correspondence berween the scalar quantities t* and o

and the parallel (to the surface) components of the electric
and magnetic fields is given by

E.z)=v(z)z (5
(

Hizi=2%5 44 (6)
Lt

in the TM case and

Hi(z)=v(z)z (7
Eg(x)=0,(—l;f1xfz (8)
tw

in the TE case. where z is the direction of translational invari-
ance. n is the surface normal. w is the angular frequency. and ¢
and 41 are the dielectric constant and magnetic susceptibility of
the external medium. respectively. All fields implicitly contain
the time dependence factor ¢'~".

A Galerkin method of moments solution [3] to the continu-
ous scalar field equation. (1). proceeds by first expanding the
unknown charge o(z) in terms of basis functions f;(z

=Y 1f(z) 9
J

and then testing the equation with each of the basis functions
by applying the operator §. ds’ fi(z')- to both sides. The
result is a marrix equation of the form

=21 (10)
where
=7( di & (z) f,(z) (1
JC
and
z, =j£ d{f dl' fi(z)G(z.2) f,i).  (12)

Similarly. we can discretize the scalar charge equation. (4). by
expanding the unknown field as

v(z) = Z S; [z

7

(13)
and applying the testing operators to arrive at the matrix
equation

=75 (14)
where

Y 7! dl [iv - V™ (2))i(z) (15)
JC

and
Z/,:?( (l«’f,lrhn~V\f di'vn' - V'Gz.x (.1
Je Je
(16u)
:f dl { dl' fiz)
¢ . .
- I, ). H i
‘<A n-n dli)W)FxI -‘f, T t16b)
=?{ dl % dl’
Je
L AEAREN
|A (n- n)f,!x\f,(x (fx ——(f,:r tGrz.x').
L Jl oar
(16¢c)

The second form for Zij is like the first in that it requires
differentiating the kernel twice. In the first form they are
normal derivatives: in the second they have been converted to
tangential derivatives by use of the Helmholtz equation. Dif-
ferentiating the kernel exacerbates the singularity of the kernel
at z = z'. which is unattractive from a numerical standpoint
unless some smoothing operator is applied to the kernel before
differentiation. FastScat uses a high-order regulated kernel [4]
that is analytic everywhere to avoid this difficulty. The third
form is obtained from the second by twice integrating by
parts. This reduces the singularity of the kernel to that of the
Dirichlet case. It does. however. require basis functions that
are differentiable.

III. HIGH-ORDER METHODS

FastScat uses patch-based basis functions for both the TM
and TE polarization cases. That is to say the basis functions
are nonzero only on individual patches. The patches are
arbitrarily curved line segments parameterized by a function
xz(u).0 < v < 1. The basis functions are defined in terms of
the surface parameterization according to

V22n +1
1y/g(w)

where P, is the nth Legendre polynomial and

_ [ o ? o\
o ()2

is the metric for the patch [5). The normalization factors
are chosen to make the basis functions orthonormal when
integrated over a patch. i.e..

[ @@
Jpatch
= / du VI U fm fn U- mn-
JQ)

The contribution to the overall solution error due to surface
misrepresentation can be eliminated by internally representing
the surface using its exact functional form [6]. Using the
combination of high-order basis functions and an exact surface
representation. FastScat can obtain a high-order approximation

Rr(‘z“ -

fulu) = 1) (7

(18)

(19)
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to the smoothly varving source distribution that is to be
expected on a smooth scattering surface.

By contrast. standard. low-order method of moments im-
plementations use flat segments 10 approximate the surface
geometry and basis functions that are constant (in the TM case)
or piecewise linear (in the TE case) on a parch to approximate
the sources. Representing a smoothly curved scatterer using
flat segments is an example of surface representation error.
Using flat segments further degrades the accuracy of the com-
putation by introducing artificial edges. which cause spurious
diffraction. Constant (or “pulse™) basis functions are equivalent
to the zeroth-order basis functions in FastScat: piecewise
linear (or “rooftop™) basis functions can be constructed from
FastScat’s zeroth-order and first-order basis functions. The
advantage of having higher order polynomial basis functions
is that they can provide accurate approximations to smooth
functions more efficiently than pulse or rooftop basis functions
alone can.

The third numerical method that must be high order to
achieve high-order convergence in the final result involves nu-
merical evaluation of integrals such as those in (12) and (16).
Gaussian quadrature is a well-known high-order method for
evaluating integrals of nonsingular integrands. The impedance
matrix elements of (12) and (16) fall into this category when
the regions of integration of £ and z' do not intersect.
Such integrals may be evaluated efficiently with Gaussian
quadrature and typically are. even in standard method of
moments codes. The trouble begins when the regions of
integration do intersect. as occurs when the patches involved
touch or are the same. In such cases. standard Gaussian
quadrature is reduced to the status of a low-order method
[7]. [8]. So-called “singularity removal™ (which is misnamed
because. aithough it removes the infinity in the kernel at
z = Z’, it does not eliminate the singularity of the kernel at
z = z’ in the strict mathematical sense) is often called upon to
handle such integrals. even though it does not actually restore
the high-order behavior of Gaussian quadrature.

Several schemes for high-order evaluation of singular inte-
grands have been devised for and implemented in FastScat.
One involves using quadrature rules that are specific to the
singularity. For 2-D. where the singularity of the kernel is
logarithmic. high-order “lin-log™ rules [9) have been devel-
oped. They are designed to exactly integrate products of
polynomials and logarithms. An alternate approach that is
more easily extended to the 3-D scattering case, involves
tampermo with the kernel to eliminate the singularity at z =
z’, but doing it in such a way that convolutions of the kernel
with polynomial functions are still computed exactly [4]. The
resulting function is regular (i.e., analytic)—hence. the name
“regulated kernel”. Convolutions of smooth functions with an
appropriate regulated kernel may be evaluated in a high-order
fashion by means of standard Gaussian quadrature. Both of
these methods lead to similar results. The calculations reported
in this paper were performed using a high-order regulated
kernel and Gaussian quadrature.

High-order methods have the potential to greatly improve
the efficiency of obtaining accurate numerical results. How-
ever. like a chain whose strength is limited by its weakest

[

link. the convergence rate of an algorithm whose final result
depends on several numerical methods. is limited by the
convergence rate of its lowest order method. For scattering
computations. this applies to the numerical methods used for
surface representation. basis functions. and quadratures. To
show how the method order of one of these components affects
the rate of convergence of the full solution. it is best to vary
that one while setting the method order for each of the other
two components high enough that they do not contribute any
noticeable error. With FastScat. the user can control the order
of each of these three numerical methods.

The focus of this paper is on high-order basis functions and
how they can be employed to efficiently compute accurate
results. Therefore. the calculations summarized here show the
effect of varying the basis function order while using exact
surface representations and quadrature orders high enough that
numerical integration error was negligible. In normal usage.
one generally uses exact surfaces and sets the orders of the
basis functions and the quadratures to be no higher than
necessary to achieve the desired accuracy in the final result.

IV. RESULTS

Measuring the order of convergence of a numerical method
requires observing how the error in the final result responds to
changes in the discretization. For small enough discretization
scales h. we expect the error to scale as ¢ ~ A" for an
nth-order numerical method.

In this next two sections. we present results of FastScat
calculations on canonical 2-D geometries (a circle and an
ellipse) that demonstrate how the rate of convergence varies
with discretization scale size and basis function order. The
third subsection is devoted to a large 2-D scattering geometry
we call the “bat.”” The bat is prototypical of scatterers whose
cross section has a large dynamic range as a function of angle.
For such scatterers. the utility of a high-order scattering code
becomes evident even at “practical™ accuracies. Sun SPARC
10°s were used for the circle calculations: the ellipse and bat
calculations were performed on IBM RS/6000 computers.

A. Circle

The circle is one of the best geometries to use for i investigat-
ing the convergence properties of a scattering code because it
has no geometrical singularities (e.g .g.. edges and corners) and
the answer can be computed to arbitrary accuracy by summing
the Mie series. This means that we can determine exactly and
unambiguously what the errors are in our computed solutions,
which eliminates one of the sources of disagreement about
how to quantify solution accuracy.

We used FastScat to compute the bistatic cross section
of 1)\-radius circles for Dirichlet and Neumann boundary
conditions, corresponding to TM and TE polarizations. re-
spectively. The circles were divided into equal segments,
each segment being represented internally as a circular arc.
Quadratre orders were set high enough to guarantee that
numerical integrations would be accurate to better than one
part in 102,
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observation angle. The curves are labeied by the number of identical segments
into which the 1\-radius circle was divided.

We performed a series of calculations with different basis
function orders and different numbers of segments. and com-
pared against the exact results (Fig. 1). A sample of the results
is shown in Fig. 2 for the case of zeroth-order basis functions
and TM polarization. The error in the cross section varies as
a function of bistatic scattering angle. It is evident. however.
that. for 64 or more patches. increasing the number of patches
by a factor of four reduces the overall error by a factor of
about 64. .

We can make a stronger quantitative statement about the
discretization error if we condense the error versus angle
information into a single number for each discretization.
Of the many ways to do this. we have investigated three:
maximum relative error. maximum error = average Cross
section. and root mean square (rms) error. For this particular
problem. the result is essentially independent of which measure
of error is chosen. Fig. 3 shows maximum relative error
(max[|RCS(#)/RCS,es(#) — 1])) versus density of unknowns
plotted on a log-log scale for basis function orders zero. one.
and two. and numbers of patches ranging from four to 4096.
Consider the TM polarization case first. The most important
feature to note is that. for enough unknowns. the data fit a
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Fig. 3. Log-log plot of maximum relative error versus density of unknowns

for the TM and TE polanzation cases. Each set of points is labeled by basis
function order.

linear trend line whose slope increases as the basis function
orfer increases. Since the discretization scale h is inversely
proportional to the number of unknowns A'. this simply reflects
the fact that the error diminishes as /™. where m increases
with method order. In fact. the slopes of the lines connecting
constant basis function points are close to integers—three
for zeroth-order. five for first-order. and seven for second-
order—indicating that the order of convergence of the cross
section when using nth-order basis functions is 7 = 2 + 3.

On the same plot. we also show an example of how the
surface model affects the convergence rate. The dashed curve
connects points that were computed by replacing the circular
arc patches with flat patches. The order of the quadratures was
the same as in the previous case. For this case. however. only
one basis function order is shown. namely zero. The reason
is that the poor surface representation so limits the rate of
convergence that increasing the order of the basis functions has
essentially no effect on the accuracy of the solution. Curves for
higher basis function orders are virtual copies of the zeroth-
order result. shifted to higher numbers of unknowns. In all
such cases, the error in the cross section is consistent with ;12
scaling.

In the TE case. the slopes of the lines connecting constant
basis function points are close to one for zeroth order, three
for first order. and five for second order. indicating that the
order of convergence of the cross section when using nth-
order basis functions is + = 2n + 1. The dashed curve
connects points computed according to the standard method
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Fig. 4. Semilog plot of maximum relative error versus density of unknowns
for TM scattering from a 1UA-radius circle. Points corresponding to different
basis function orders for a fixed patch size are connected by lines and labeled
by the number of patches.

of moments procedure for TE polarization. namely. by putting
rooftop basis functions on a faceted approximation to the
scatterer. It converges more rapidly than do the calculations
that used zeroth-order (i.e.. pulse) basis functions with an
exact geometry representation. This is not surprising given that
currents modeled by rooftop basis functions are guaranteed to
be continuous across patch boundaries. whereas those modeled
by pulse basis functions are not. As in the TM case. however.
using higher order basis functions. whether patch-based or
edge-based. does not improve the order of convergence when
a low-order geometry representation is used. It only increases
the number of unknowns used to achieve a given accuracy.
In all such cases. the error in the cross section is consistent
with 42 scaling.

Since memory usage is proportional to N2, these plots
also show how method order affects the relationship between
accuracy and memory used. For errors less than about 10~
in the TM case and one in the TE case. not only are the
errors in the cross sections lower when high-order methods are
employed. but also the marginal cost of additional accuracy is
lower.

In the plots shown so far. curves connect data points
corresponding to decreasing patch sizes at a constant method
order. In finite element terminology this'is known as “h-
refinement.” As we have seen. h-refinement on a smooth
scatterer results in geometric convergence in the cross sec-
tion. Alternatively. one can take the same data and make
a plot by connecting points of increasing method order for
a fixed patch size. This is known as “p-refinement.” The
result of doing this for bistatic scattering from a 10A-radius
circle and TM polarization is shown in Fig. 4. The curves
tend toward straight lines. which. on a semilog plot, indi-
cates exponential convergence. Exponential convergence in the
computed cross section is characteristic of p-refinement on a
smooth scatterer when high-order polynomial basis functions
are used.

Methods that achieve high-order convergence in general.
and exponential convergence in particular. have obvious ad-
vantages for efficiently computing accurate cross sections.
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Fig. 5. Log-log plot of maximum relative error versus total computation
time required to calculate the bistatic cross section of a 1UMA-radws circle
with TM polarization. Points corresponding to different basis function orders
and a fixed patching are connected by lines. which are labeled by the number
of equal arc length patches used.

What may be less obvious is the fact that they facilitate
accuracy estimation for computed solutions. For example.
suppose we had not had an independent means (such as the
Mie series for a circle) for computing a suitably accurate
reference solution. We could still obtain an estimate of the
accuracy of a given computed solution by comparing it to
a reference solution generated by redoing the computation
with an even finer discretization. To be useful. however.
the reference solution must be significantly more accurate
than the comparison solution. Obtaining a suitable reference
solution using low-order methods may require doubling or
quadrupling the number of patches. and hence the number
of unknowns. The additional cost of such a calculation may
be so high as to make it impractical. On the other hand. gen-
erating the reference solution by increasing the basis function
order can produce a significantly better answer with only a
modest increase in the number of unknowns. The increase in
required memory and computation time is likewise modest. In
our opinion. the widespread reliance on low order methods
is what accounts for the fact that it is virtually unheard
of to see accuracy estimates accompanying computed cross
sections.

Another observation that may be made from Fig. 4 is that
the way to achieve a high accuracy result using the least
memory (i.e.. fewest unknowns) is to make the patches large
and put high-order basis functions on them. A look at run
times instead of unknowns/memory usage leads to the same
conclusion. Fig. 5 shows that for TM scattering from a 10\-
radius circle, the total computation time required to achieve a
given accuracy decreases as the number of patches decreases.
A point of diminishing returns is reached at around 16 patches,
at which point the arc length of each patch is about 4X. The
optimum distribution of patch sizes for an arbitrary scatterer
will depend on its geometry. The general rule of thumb
that we follow for patching smooth scatterers is to make
the patches about one wavelength long. except in regions
where the geometry is strongly curved. In such regions, the
patches should be some moderate fraction of the local radius
of curvature.
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Fig. 6. Monostatic cross section of a 20\ x 2\ ellipse (shown with 32
patches) for TM polarization.

B. Ellipse

A good candidate geometry on which to apply this rule of
thumb is the 20X x 2 ellipse. We can describe the ellipse by
the parametric equations

(20a)
(20b)

where ¢ = 10X and b = 1A. A sensible patching. which
puts the highest density of patches in the most highly curved
regions and vice versa for the flatter regions. is obtained if the
patches cover equal increments in the parameter 1. as indicated
in the inset to Fig. 6.

We used FastScat to compute the monostatic cross section
in TM polarization of a 20A x 2 ellipse using several different
combinations of basis function order and number of patches. In
all cases. an exact surface representation was used to eliminate
surface representation error. and the quadrature order was set
high enough to guarantee that quadrature error would have
an insignificant effect on the final accuracy. The reference
solution was computed by putting tenth-order basis functions
on an eliipse divided into 160 patches. Although we did not
know the accuracy of the reference solution a priori. we have
deduced from the convergence behavior of the comparison
solutions that it is at least ten digits. A plot of the monostatic
cross section versus angle for the reference solution is given
in Fig. 6.

Fig. 7 demonstrates that one can realize exponential conver-
gence in the cross section by using high-order basis functions
with a fixed patching. In the high-accuracy regime. memory
usage is optimized by using large patches and high-order basis
functions. In the low-accuracy regime. the accuracy is not that
sensitive to the discretization for a given density of unknowns.
The accuracy at which the various curves tend to bunch up is
geometry dependent. but. as a general rule. can be expected
1o decrease as the problem size increases.

The analog to Fig. 5 for the ellipse is Fig. 8.
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Fig. 9. "Bat" geometry.

and six short edges. each of length L/3. at right angles to each
other. The surfaces of the corresponding 3-D bat are assumed
to be perfect conductors. It is interesting from a practical
point of view because it has three high cross section specular
reflection regions (one of which is the 2-D analog of a corner
cube) and a low cross section everywhere else (see Fig. 9).
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The results shown here are for R = 1. L = 300). Fig. 10
shows two computations of the monostatic cross section as a
function of incidence angle for Dirichlet boundary conditions
(i.e.. TM polarization). One computation was performed using
low-order basis functions. the other used high-order basis func-
tions. Both calculations used an exact surface representation,
quadratures good to at least eight digits of accuracy. and
exactly 6000 unknowns to represent the sources. In the former
case. the surface was broken up into 6000 segments. each
about :/\ long. and the sources were represented by pulse basis
functions (i.e.. one unknown per segment). This constitutes the
standard. low-order procedure (except for the exact surface
representation used on the circular arcs) for solving a 2-D
scattering problem with TM polarization. In the latter case. the
surface was divided into 1200 patches. each about 1) long. and
basis functions up to fourth-order were employed to represent
the sources (i.e.. five unknowns per segment).

The two plots are very similar over a good portion of the
angular range. particularly in regions of high cross section.
There are narrow peaks at 45 and 135° as expected and a
broader peak centered at 180°. resulting from the “corner
square™ effect. Note that the oscillations evident in the cross
section are the result of interference. not due to any solution
error. However. in the angular ranges from O to 30° and 60
to 120°, there are significant disagreements. The “spikes™ in
the upper plot Fig. 10 are suspicious looking. Which is right?
How can one be sure?

Having high-order methods at one's disposal makes it
possible to answer these questions with the kind of certainty
that is impractical to attain with low-order methods. If we
keep the same patching of the bat, but allow up to fifth-order
basis functions instead. the number of unknowns increases to
7200. This corresponds to a 44% increase in the amount of
memory required to store the impedance matrix and a 73%
increase in the amount of CPU time required to LU decompose

the impedance marrix (which is the most time-consuming step
in the solution process). More importantly. allowing for one
higher polynomial order 1o represent the sources improves the
accuracy of the solution significantly. So much so that we are
Justified in using the fifth-order solution as a reference solution
against which we can compare the lower-order solutions in
order to estimate their accuracies. To compute a reference
solution of comparable accuracy by the standard. Jow-order
technique would require subdividing the 6000 patches many
times into smaller patches. The number of unknowns would
increase significantly. In principle. it could be done. but since
CPU time for LU decomposition and memory for impedance
matrix storage scale so badly with number of unknowns.
the cost would be so exorbitant as to make the procedure
impractical.

Fig. 11 shows plots of the differences between the fifth-
order reference solution and the two solutions plotted in
Fig. 10. It is evident that the fourth-order solution is the better
of the two. As expected, the error is least where the cross
section is highest. The estimated error of the fourth-order
solution is generally below 10-3\: at a few angles it rises
to almost 102 ). If error bars were to be plotted on the high-
order data of Fig. 10. they would all be less than the thickness
of the plotted line. Fig. 11 also shows the estimated error
of the low-order solution to be generally higher. Whereas it
is probably acceptable over angular regions where the cross
section is high. in the low cross section region the error cannot
be considered acceptable, exceeding. as it does, 20 dB for
certain angles. Similar results obtain for TE polarization.

V. SUMMARY

The unfavorable tradeoff between cost and problem size for
method of moments solutions to scattering problems is well
known and several so-called “fast™ methods. such as the fast
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multipole method [10). have been devised in recent vears to
address it.

The subject of this paper is another tradeoff that. while no
less important. is apparently much less widely appreciated. It
is the tradeoff between cost and accuracy for a fixed problem
size. Improving the accuracy of a computed solution requires
refining the discretization. which in turn requires more memory
and more computation time. With low-order methods the
amount of additional computer memory and time required to
achieve a more accurate result may be substantial. High-order
methods are designed to make accuracy improvements much
less costly.

The focus in this paper has been on using high-order basis
functions to compute cross sections in 2-D. High-order basis
functions are part of the triad of high-order methods that
make FastScat a high-order scattering code. The results show
that by using high-order methods it is possible to achieve
very accurate solutions to simple scattering problems on a
workstation in a reasonable amount of time. Furthermore. we
have demonstrated that the solution converges at a geometric
rate as a function of patch size for fixed basis function order
and exponentially as a function of basis function order for
fixed patch size. For high accuracies. the most computationally
efficient solutions. in terms of both memory and CPU time,
are produced by using high-order basis functions on large
patches.

High-order methods are important for doing large problems
as well. In fact. the adverse effects of a low-order discretization
are likely to manifest themselves even more prominently as
problems grow in size. The error caused by a low-order
discretization will be particularly noticeable on scatterers
whose cross section has a large dynamic range as a function
of angle. We devised a large 2-D scatterer called the bat
in order to demonstrate this effect. We observed that where
the cross section is high. solutions computed using low-order
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RCS error with respect to reference solution computed with fifth-order basis functions on 1\ patches (7200 unknowns). Upper curve: zeroth-order

and high-order basis functions were about the same. whereas
in the more interesting regions where the cross section is
low. the high-order solution is accurate while the low-order
solution has significant errors. Had we used a low-order
surface representation the result would likely have been worse
still. The bat also demonstrated the practical utility of high-
order methods for estimating the accuracy of a computed
solution.
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We show how to solve time-harmonic scattering problems by means of a high-
order Nystrom discretization of the boundary integral equations of wave scattering
in 2D and 3D. The novel aspect of our new method is its use of local corrections 10
the discretized kernel in the vicinity of the kernel singularity. Enhanced by local cor-
rections. the new algorithm has the simplicity and speed advantages of the traditional
Nystrdm method. but also enjoys the advantages of high-order convergence for con-
trolling solution error. We explain the practical details of implementing a scattering
code based on a high-order Nystrém discretization and demonstrate by nume-ical
example that a scattering code based on this algorithm can achieve high-order con-
vergence to the correct answer. We also demonstrate its performance advantages over
a high-order Galerkin code. & 1998 Academic Press

Key Words: high-order numerical method: Nystrém method: boundary integral
equation: Nystrom discretization; local corrections: acoustic scattering: electromag-
netic scattering.

I. INTRODUCTION

High-order methods are numerical methods characterized by their ability to obtain extra
digits of precision with comparatively small additional effort. Scattering codes that employ
high-order methods have a distinct advantage over scattering codes that use low-order meth-
ods when it comes to computing results accurately. We demonstrated this advantage with
a Galerkin method of moments scattering code called FastScat™ [1, 2], which employs
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high-order methods in its geometry description. current basis functions. and quadratures. In
terms of memory efficiency. the advantage of using a high-order code such as FastScat was
clear. For a given number of unknowns. results obtained with FastScat were generally more
accurate than those obtainable by low-order codes. with the accuracy gap widening rapidly
as the number of unknowns applied to the problem was increased. In terms of CPU time efti-
ciency. however. the advantage of using a high-order code such as FastScat was not so clear.
The precomputation phase of the calculation often accounted for an undesirably large trac-
tion of the total solution time. Although we were able to significantly accelerate the partof the
precomputation phase devoted to computing near-interaction matrix elements by using high-
order regulated kernels [3]. the overall matrix fill procedure was still considered too slow,

The precomputation phase of a Galerkin scattering calculation is time consuming because
itrequires numerical evaluation of the convolution of the kernel with basis functions on every
pair of source and field patches. This amounts to N numerical double integrations over
patches. where N is the number of unknowns. By contrast. when a point-based (Nystrom)
discretization is used. the impedance matrix fill step consists of nothing more than a kernel
evaluation to fill most matrix elements and O(N) single integrations and some low-rank
linear algebra to fill the others (specifically. the near interactions). As a result. use of a
point-based discretization dramatically reduces precomputation time.

Despite its simplicity and speed advantages. the Nystrom method has not been widelv
used for discretizing the integral equations that arise in 2D and 3D scattering problems.
In fact. we know of only a few reported instances. of which [4. 5] are examples. The
problem is that the conventional Nystrom method [6] is designed to handle regular kernels.
whereas the Helmholtz kernel for wave scattering is singular wherever the source point
coincides with the field point. The standard way [6] to try to overcome this problem is to
use so-called “singularity extraction.” which. in practice. removes the infinity in the kernel
but not the singularities in the kernel's derivatives. While singularity extraction avoids the
dilemma caused by numerical evaluation of the kernel at infinities. it does not eeneralize
easily to arbitrary surface patch geometries and it is a low-order method. In this paper. we
introduce “local corrections™ as a means to overcome the problems associated with kernel
singularities. This enhanced Nystrom discretization method has all the advantages of the
standard Nystrdm method combined with the high-order convergence capability required
to achieve error control.

This paper provides a detailed explanation for using the Nystrom method to solve scat-
tering problems in the 2D and 3D scalar cases and the 3D vector case (by which we mean
electromagnetic scattering based on the Maxwell equations). as well as numerical evidence.,
demonstrating the method’s utility. The first section reviews the traditional Nystrom method
for discretizing integral equations and explains how it can be adapted to handle singular
kernels by incorporating local corrections. The second section discusses practical aspects of
implementing a high-order Nystrém code. such as appropriate surface models and meshes.
choice of testing functions for computing local corrections. and how to compute scattering
results. In the fourth section, we show numerical results for some 2D and 3D canonical
scatterers to demonstrate that our implementation of the Nystrdm method achieves high-
order convergence to the correct answer. We also demonstrate the run-time performance
benefits of a using high-order Nystrom code. compared to high- and low-order Galerkin
codes. in this section. Finally. the Appendix describes how the local correction integrals for
2D scalar. 3D scalar. and 3D electromagnetic scattering can be formulated for efficient and
accurate numerical evaluation.
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II. NYSTROM METHOD

A. Conventional Nystrém Method

The conventional Nystrom method is a simple and efficient mechanism for discretization
of integral equations with nonsingular kernels. Consider the integral equation

d(x) = /dS'G(X—X')dI(x') (1
S

and a quadrature rule for integrating a function f(x) over the region $

/dsf(x)é
s

Such a quadrature rule will be provided by Gauss-Legendre or Gauss—Jacobi rules on a
parameterization of . so that the weights w, will be the products of the elementary weights
w, with the Jacobian of the parameterization:

Wy =/ g(“n)wn- (3)

Xy = X(y). 4

N

wnf(xn)~ 2)
.

h=

where u, are the abscissae of the elementary rule. x(u) is the mapping function of the
surface §. and g(u) is the determinant of the mapping metric. The extension to patched
parameterizations is straightforward.

The Nystrom discretization of a function on S is simply the tabulation of the function at
the quadrature points x,,:

WH = W(xn)- (5)

To discretize integral Eq. (1), we simply form a matrix from the kerne!:

It
bn = Z wnG(xm - xn)I//n- (6)

n=|

This discretization has an error of the same order as the underlying quadrature rule [7].
In other words. if the surface S is smooth, ¢ and G(x — x’) are regular functions. and if
a high-order quadrature rule is used. then the solution to Eq. (6) represents a high-order
approximation to the exact solution.

Unfortunately. the kernels G (x — x’) for wave scattering are not regular. Instead, they
have singularities (or even hypersingularities) at short distances. With such kernels it is
often not even possible to make a matrix out of the kernel because its value is undefined
when x = x". Even if the kernel were finite at vanishing separation, a kernel singular in its
higher derivatives would spoil the high-order properties of the above prescription.

B. High-Order Nystrom Method for Singular Kernels

We have adapted the Nystrom method to handle singular kernels, without sacrificing hi gh-
order convergence. by incorporating Strain’s method [8] for obtaining high-order quadrature
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rules for singular functions. The essence of the method is that by computing convolutions
of the kernel with a suitable set of testing functions. it is possible to determine how to adjust
the quadrature rule so that it is just as accurate near the singularity as far from it. The beauty
of the method is that these quadrature rule modifications are required only in the vicinity
of the singularity. hence the name local corrections.

Conceptually. local corrections may be viewed as adjustments to the quadrature weights
(at the original set of sample points) that are required to make the quadrature rule high-order
accurate when the (singular) function G(x —x") is included in the integrand. In practice.
since quadrature weights and discretized kernel terms alwavs enter into the quadrature rule
as product pairs. one can equally well “locally correct™ the discretized representation of
kernel and keep the original quadrature weights. This is the preferred approach because the
modified representation of the kernel has no infinities. We can write the “corrected” matrix
representation of the kernel as

G, = { L”f”‘ when X, € D,,. )
G(X,, —x,). otherwise.

where L ,,, is a (sparse) matrix of local corrections whose entries are nonzero only for source
points x,, within a small domain D,, centered on the field point x,,. For |x,, — x'| sufficiently
large (i.e.. outside the local correction domain D,,). G(x,, —x') is a smoothly varying
function of position and the underlying quadrature rule provides a high-order approximation
to the desired integral. Close to the singularity. on the other hand. the singular nature of
the kernel spoils the high-order behavior of the underlying quadrature rule. and it becomes
necessary to use locally corrected values for the kernel instead of G(x,, —x,,) in order to
achieve high-order convergence. The mechanism for computing the local corrections for
a given set of source points is explained below. The size of the local correction domain is
discussed in Section II1.D.

The underlying quadrature rule is exact for integration of a certain class of functions
(typically polynomials). We choose the local corrections to make convolution of the singular
kernel with the same class of functions exact. They are obtained by solving the linear system

Z w,,L,,,,,f‘“(x,,, - X,,) = / dS/G(X,” - x’)f”\)(xm - X/). (8)
n D,

which represents K constraints (one for each testing function f*") on J local correction
coefficients (one for each of J source points in the vicinity of the mth field point). The
integral over D,, can be obtained by oversampling the region of integration until the result
has converged to the desired accuracy. The nonzero components of the mth row of the local
correction matrix are obtained by inverting the (small) system of equations above, either by
factorization (via LU decomposition) if / = K or by singular value decomposition (SVD) if
J # K. Computing local corrections is the most time consuming step of the precomputation
phase. Fortunately, it needs to be done only once at every sample point.

C. High-Order Nystrom Method Advantages

There are several reasons for using the Nystrém method to achieve a high-order dis-
cretization:
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e Faster precomputarion. Unlike the Galerkin method. which requires A" numerical
double integrations to fill the impedance matrix. the Nvstrom method requires less than A2
kernel evaluations and O(N) calculations of local correction coefficients (each of which
involves a small number of adaptive integrations and a low-rank matrix inversion). An addi-
tional acceleration is possible when multiple solutions are desired at different frequencies.
This comes about because a frequency-dependent Helmholtz kernel can be written as the
product of a smoothly varying. frequency-dependent function and a frequencyv-independent
Laplace kernel. Once the local corrections for the Laplace kernel have been computed. they
can be used with minor modification at any frequency.

e Elimination of multiparch. parametric basis functions. Conventional method of mo-
ments scattering codes require basis functions with a certain level of continuity (in the
surface parameterization) across patch boundaries to facilitate differentiation. For example.
an important property of the popular RWG [9] basis functions for electromagnetic scat-
tering is that their normal components are continuous across patch boundaries. One can
also use high-order extensions to the RWG basis functions [10]. although we have found
that implementing these basis functions in a scattering code can be both complicated and
inconvenient. especially for arbitrary. curved surfaces. Fortunately. for high-order codes
the requirement to use elemental sources with guaranteed continuity between patches dis-
appears because continuity of the source distribution is achieved as a natural consequence
of accurately solving the integral equation. (The reason this is so has to do with the fact
that the error caused by not enforcing continuity of the elemental sources is comparable
to the error of the underlying discretization. With a low-order discretization (e.g.. RWG
basis functions on flat patches). continuity enforcement has a significant payoff because
the error in the underlying discretization is also significant. With a high-order discretiza-
tion. where the error due to the underlying discretization can more easily be made in-
significant. the situation is reversed. Thus. for high-order codes. whether Galerkin or
Nystrom. the benefits of enforcing source continuity between patches do not outweigh the
inconveniences.)

o More amenable to fast solution algorithms. Implementation of a fast method that
requires segregation of the discretized scatterer into groups (such as the fast multipole
method (FMM) [11] or adaptive integral method (AIM) {12]) is simpler and more natural
with a point-based discretization. When a Galerkin implementation with overlapping basis
function domains is employed. the fast algorithm is either more complicated (because multi-
patch basis functions must be split apart) or less efficient (because the groups are larger).
A Galerkin implementation that uses high-order basis functions (even those confined to
single patches) cannot achieve optimum efficiency from the FMM because high-order basis
functions are used to their greatest advantage on patches larger than a wavelength, whereas
optimum use of the FMM favors groups smaller than a wavelength. In a Nystrém discretiza-
tion, the groups consist of individual sample points on the surface, so no such grouping
restrictions apply.

e lterative solver memory reduction. With the Nystrém method. the memory requirement
for an iterative solver using the full impedance matrix can be reduced from O(N*?) (storing
the full impedance matrix) to O(N) (storing only the sparse local correction matrix). This
is practical because reconstruction of the unsaved portions of the impedance matrix only
requires evaluations of the kernel, which are fast. If the FMM is used to represent the far
interactions. the storage requirement goes from O(N*) in the single-stage case [13] to
O(N log(N)) in the multilevel case [14].
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o Symmetry exploitation. When basis functions are used. it is more complicated to re-
flect geometrical symmetries in the matrix representation. It may be necessary to explicitly
consider basis function transformation properties and to provide special treatment for some
variables (e.g.. the coefficients of basis functions whose domains intersect reflection planes).
In the Nystrom case. the representation of svmmetries is much simpler.

III. PRACTICAL CONSIDERATIONS

A. Surface Description

Without a high-order surface description. a high-order Nvstrom discretization is of little
benefit. For example. representing a curved surface by means of flat facets limits the rate of
solution convergence to low order whether or not the rest of the discretization method is high
order. Ideally. the internal representation of the surface exactly matches the physical surface.
Such arepresentation is possible for idealized curved shapes such as circles. ellipses. ogives,
etc. in 2D. and spheres. ellipsoids. etc. in 3D. For curved objects of more practical interest.
a high-order description of the physical surface may be given by high-order parametric
representations such as bicubic splines or NURBS (nonuniform rational B-splines). As
these are often the representations used by a CAD program to describe the object as it is
being designed and built. it is appropriate that we should also use them for electromagnetic
or acoustic modelling purposes.

Use of a high-order surface description is distinguished from that of a faceted description
in that the subdivision of the surface into patches is typically done once and refining the
discretization to improve accuracy is accomplished by increasing the order of the quadrature
rule (which increases the number of sample points per patch).

B. Meshing

The essence of a point-based discretization is the tabulation of functions at a set of points
lying on the surface. This need not have anything to do with subdividing a surface into
patches. Indeed. in the 2D case. patches can be done away with entirely on closed surfaces
(i.e.. closed curves) parameterized by arc length. because the trapezoidal rule is a high-
order quadrature rule for periodic functions. In 3D. however, global parameterizations with
natural. high-order quadrature rules are much harder to come by. so subdivision of a surface
into patches. each of which comes with its own high-order quadrature rule. becomes a
practical necessity.

Since patches are introduced solely for the purpose of providing ready-made. high-order
quadrature rules on the surface. the job of meshing a surface is simpler and less restrictive.
Specifically, whereas a mesh designed for use with RWG-type basis functions is not allowed
to have a vertex in the middle of an edge. there is no such restriction on a mesh designed
for a point-based discretization. The only practical restrictions are that the mesh cover the
surface and that the patches not be so distorted or curved that the supposedly high-order
quadrature rules are not actually high order.

C. Testing Functions

The choice of testing functions goes together with the choice of quadrature rule. If the
quadrature rule is designed to efficiently integrate regular functions. the testing functions
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should be regular functions of increasing order. In locations where singular behavior of the
source function is expected. such as near geometric singularities (e.g.. edges and comers).
it may be desirable to apply a different quadrature rule and use appropriately singular
 testing functions [15]. For purposes of this discussion. we will assume the scattering surface
and the sources are smooth functions of position. Any departures from regularity can be
accommodated reasonably efficiently by tapering the size of the patches in the direction of
the singularity.

Testing functions may be global or local. Examples of global testing functions are mono-
mials in the surface parameter u in the 2D case. and powers of x. v.and - in the 3D case. The
advantage of using global testing functions to compute local corrections on smooth surfaces
is that such testing functions are manifestly continuous across patch boundaries. just like
the sources. Sometimes enforcing continuity is a mistake. however. such as when the field
point and source patch are near each other but on separate. unconnected surfaces. Global
testing functions can also perform badly near geometric singularities such as a right-angle
bend. Local testing functions (i.e.. testing functions confined to individual patches) do not
take full advantage of the guaranteed continuity of the sources on touching patches but are
the preferred choice because they are simpler to implement and more robust.

With local testing functions. the local corrections for a given field point can be computed
on a patch by patch basis. Thus. the number of points whose quadrature weights are being
corrected always equals the number of sample points on the patch. Doing this has the side
benefit of keeping down the size of the local correction linear systems that must be solved
when it becomes necessary to compute local corrections for points on several patches.

The number of local testing functions to use is still a free parameter. In 2D. where use of
a Gauss-Legendre rule of order M allows exact integration of polynomials up to order 2M
(i.e.. degree 2M — 1), it makes sense to use as many testing functions as there are points to
locally correct. In effect. the singular kernel and the unknown source function are both bein o
approximated to order M. which means the order of approximation for the product is 2M.
This results in an exactly determined system of equations for computing local corrections.

In 3D. if a Gauss—Legendre product rule of order M, M, is used on quadrilateral patches.
the natural number of local testing functions to use is 4M M. This leads to an exactly
determined system. If the patches are triangles. one can use the quadrature rules of Lyness
and Jespersen [16] and their higher-order extensions. For these triangle rules, a natural
correspondence between the number of sample points and the maximum testing function
degree is less obvious. When the number of sample points and the number of testing
functions are not the same. they can at least be made close. in which case the nonsquare linear
system of equations for the local corrections can be solved by computing a pseudoinverse
using SVD. In our experience. local correction systems that are square or nearly square
perform best.

C.1. Two-dimensional scalar testing functions. Monomials of increasing degree in the
parameterization, i.e.. f*' (i) =u*. are the simplest testing functions, but they can also be
troublesome when using high-order rules because they produce linear systems for computing
local corrections whose condition number grows exponentially with degree. The alternative
we favor is orthogonal polynomials such as Legendre or Lagrange polynomials. With either
of these polynomials as testing functions, it takes a little longer to compute the integral on
the right-hand side of Eq. (8). but the linear system is well conditioned for all polynomial
degrees. In addition. if the number of testing functions K equals the number of source
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points whose quadrature weights are being corrected J. then the system is orthogonal and
the matrix consisting of the K testing functions evaluated at the J different source points
can be inverted simply by transposition.

C.2. Three-dimensional scalar testing functions. The trade-off between the simplicity
of monomials and the better conditioning behavior associated with orthogonal polvnomials
exists also in the 3D cases. In 3D. however. our experience have been confined to testing
functions of a low enough degree that use of monomial functions generally does not pose
any serious trouble. On triangular patches. we use testing functions of the form

f“'(u):(ul)'”(u:)”. (9)

where «' and u” are the parameters of the surface description and the exponents obey
O<m.n<Mand0<m+n<M for some maximum testing function degree M.

C.3. Three-dimensional vector testing functions. 1In this case. vector testing functions
locally tangent to the surface are required: continuity of the testing functions between
adjacent patches is not. A natural set of basis vectors is given by the derivatives of the
surface with respect to the two surface parameters u' and 2. We use testing functions of
the form

_ dix(u) ik

u). (10
Vgu)

()

where v = 1. 2 and the scalar functions f“ '(u) are the same as those used in the 3D scalar
case. This form for the testing functions has the property that the surface divergence of

til‘)iS oy
d.x(u) d.X(u) :
Vothu = 22— (VFRm)) = : “Ha, FR () dgx 1)
TW= e (VW) = T | e e |

uft

since d.x(u)/4/g(u) is divergenceless (see Appendix C). This form for the divergence of
t'*'(u) (which enters into the computation of local corrections for the hypersingular kernel)
has the especially desirable property that it avoids the need to compute second or higher
order derivatives of the surface.

D. Extent of Local Correction Domain

When local testing functions are used. the region over which local corrections should be
computed always includes the patch containing the field point. and it extends out to include
other patches until the underlying quadrature rule is accurate enough to replicate the exact
answer to within a desired tolerance. Since the testing functions have local support, the
problem of computing local corrections for a region containing several patches decouples
naturally into several smaller local correction problems. one for each patch. The tolerance
should be based on an estimate of the optimum accuracy that the particular discretization
could achieve: there is, after all. little to be gained by trying to evaluate the impedance
matrix more accurately than what is warranted by the discretization. The integrals on the
right-hand side of Eq. (8) can be computed by adaptive integration to comparable accuracy.
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E. Local Corrections for “Regular™ Parts of the Kernel

In principle. it is unnecessary to compute local corrections for regular components of
the kernel because they will be efficiently integrated by a quadrature rule of sufficiently
high order. If such components are strongly peaked. however. the required order may be
so high that it is computationally more efficient to treat them as if they were singular
and compute local corrections for them. For example. the scalar kermel /' - V'G(x.x') in
2D or 3D is a strongly peaked function of x' when the field point x is close to. but not
on. the source patch. This situation arises in the analysis of scattering from thin lavers. for
example. One way to handle this problem is to put a fine discretization on each laver. in effect
subdividing the strongly peaked kernel function into small parts. each of which is relatively
smooth. This procedure is inefficient. however. because it uses many more sample points
than are warranted by the expected spatial structure of the source. A better approach would
be to discretize each layer densely enough to adequately represent the sources and compute
local corrections for the strongly peaked kernel. Computing such local corrections can be
a nontrivial task by itself. but one might expect that the extra time spent in precomputation
would be compensated by a less time-consuming solution phase.

F. Using the Resul:s

F.1. Computing scattered fields. The amplitude of a scattered wave can be computed
by convolving the scattered wave with the source distribution. Even though a Nystrom
discretization specifies the source only at a finite set of points. these points are ideally
suited for evaluating integrals in a high-order fashion by virtue of Eq. (2). For example. the
amplitude F (k) for 3D scalar scattering of a source distribution ¥ (x) on a surface S with
Neumann boundary conditions (i.e.. i - Vi (x) =0 for x on S) into the plane wave given
by ¢ (x) =e'k* is

1
F(k) = —f ds(f - Vo™ (x)) ¥ (x) (12)
4 S
1
= — wi (A(X;) - V™ (X)) ¥ (x;). (13)
4 4

¢

where the sum is over all quadrature points and = indicates complex conjugation. The
extensions to other forms of scattering, whether near- or far-field. are straightforward.

F.2. Source interpolation. When a scattering problem is solved using a Galerkin scat-
tering code. it is obvious how to compute the value of the source distribution at any point
on the surface because the solved-for coefficients muitiply basis functions that are uniquely
defined at every point on the surface. The Nystrom discretization, on the other hand, returns
values of the sources only at a finite set of discrete sample points. so that determining the
value of the source distribution at a point that is not part of this set requires interpolation.

When the scattering computation is performed using a second kind integral formulation,
one can use the original Nystrom interpolation formula, augmented by local corrections, to
interpolate the source distribution. As an example, if the magnetic field integral equation
(MFIE) is used to solve for the electric current distribution J(x) induced on a perfectly
electrically conducting (PEC) scatterer by an incident magnetic field H™(x), one can write
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the current at any point X on the surface S as [17]

J(x) = 2A(x) x {H"“(x) - }(ds'V'G(x. x) x Jix]. (14
s

We obtain an interpolation formula from this continuous equation by using Eq. (2) to
approximate the integral. i.e..

Jo) = 2A(x) x [H™(x) —Zw,v’cu. x) x Jx) | (15)

where the sum over J extends over all sample points on §. Of course. to make this a high-order
interpolation formula. it may be necessary to compute local corrections to the quadrature
rule at source points in the vicinity of the field point x.

Another interpolating function. which does not require computing new local corrections
and is usable with first or second kind integral formulations. takes the form of a linear
combination of the functions that are integrated exactly by the underlying quadrature rule.
The coefficients may be determined by convolving the source with the projection operator

1 X) = Y N ) £, (16)

nm.n

where the summation extends over all functions f; (x) for which the quadrature rule is exact.
and N is a normalization matrix whose components are given by

N = / ds Fn (%) f(X). a7
JS

If the fi(x)'s are orthonormal over S. then N is simply the identity matrix. Convolution
with /(x.X') eliminates the part of a function that is orthogonal to all the f,(x)’s. If we
evaluate the convolution of /(x. x) with the source function by means of the underlying
quadrature rule. we arrive at the following source interpolation function s(x), which only
requires knowledge of the source at the discrete set of sample points s(x;):

S =" fulON T 3w fr(x) 5(%,). (18)

m.n i

The summation over i in the above equation extends over all sample points.

IV. RESULTS

This section is composed of two parts. The objective of the first part is to show that our
most recent version of FastScat. which uses a Nystrom discretization. achieves high-order
convergence to the correct answer for a few small, benchmark problems from 2D scalar and
3D vector scattering. In the second part. we benchmark the performance of this code against
two Galerkin codes. comparing them on the basis of CPU time and solution accuracy.
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A. Validation

The most common practice seen in the literature for demonstrating the validity of a scat-
tering code is to show that the results obtained from the code with a particular discretization
compare favorably to a reference solution obtained from a series solution. another scatterin e
code, or measurements. Individual results such as this. while useful and necessary. say noth-
ing about the convergence properties of the algorithm on which the code is based. To show
how an algorithm converges. one must compute results with a sequence of increasingly fine
discretizations and observe whether and how the results converge to the correct answer.

This 1s especially important when validating a (purportedly) high-order code. One cannot
expect to enjoy the benefits of a high-order code (more accurate solutions. solution error
control. etc.) on large scattering problems without first verifying that the code achieves hi ¢h-
order convergence on small scattering problems (where it is easier to generate solutions with
very small errors). The order of convergence of a numerical method relates to the rate at
which the error in the computed solution decreases as the discretization scale decreases.
For small enough discretization scales A, the error in the solution computed by a pth-order
method scales as /7. The results presented in this section will be shown to follow this
scaling law.

The benchmark problems include a circle and an ellipse in 2D, and a sphere and an
ellipsoid in 3D. In the 2D scalar scattering cases. results for both Dirichlet and Neumann
boundary conditions on the surface will be presented: in the 3D vector (electromagnetic)
scattering cases, it will be assumed that the surfaces are perfect conductors. The surface
boundary conditions are chosen mainly for simplicity: similar convergence behavior has
been shown for other types of boundary conditions (such as impedance boundary conditions
and dielectric interfaces) as well.

A.l. Two-dimensional scalar. We solved four different integral equations to obtain 2D
scalar scattering results. For Dirichlet boundary conditions (which correspond to the TM
polarization case of electromagnetic scattering from an object with cylindrical symmetry)
the first-kind integral equation is

™ (x) = —fdl’G(x. x) o (x). (19)
c

and the second-kind equation is
. 1
—h- Vo™ (x) = 50(X) + j[ dl'i" - V'G(x,x)) o (x). (20) .
< c

In these equations ¢™™(x) is the incident scalar field, G (x. x') is the 2D scalar kernel, and
fi and i’ are the unit normals to the contour C at the field and source points, respectively.
For this polarization case. the 2D scalar source o is proportional to the z component of
the electric current J in the corresponding 3D vector problem. assuming z is the axis of
translational symmetry.

For Neumann boundary conditions (which correspond to the TE polarization case of
electromagnetic scattering) the first-kind integral equation is

- Vo™ (x) = ?{ dl'(fi - VYR - V'G(x. X)) ¥ (x) (21)
C
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and the second-kind equation is

¢'"‘(x)=;1//(x)—fd/(n VG x ) vx). (22)
< ¢
For this polarization case. the electric current J in the corresponding 3D vector problem.
assuming z is the axis of translational symmetry. is related to the 2D scalar source v by
J=vhxi (23)
A combined field equation can be obtained in either case by adding the first and second
kind equations together using an appropriate combination coefficient [18]. Although no
combined field equation results are reported here. it should be noted that use of a combined

field formulation is often recommended because. by being insensitive to internal resonances.
it can improve the condition number of the impedance matrix.

A.la. T 2-radius circle. A circle is the ideal problem for benchmarking a high-order
scattering code because its surface is smooth and easy to define exactly. and its cross
section can be determined. for purposes of comparison. to arbitrary accuracy using the Mie
series [19]. We used FastScat to compute the bistatic cross section of a 1 i-radius circle
whose surface obeys either Dirichlet or Neumann boundary conditions. which correspond
to TM and TE polarizations. respectively. Meshing the circle consisted of dividing it into
circular segments of equal arc length. Nystrém sample points were distributed on each
patch (parameterized by arc length) according to a Gauss-Legendre integration rule of a
given order and Legendre polynomial testing functions up to half this order were used for
computing Jocal corrections. The resultant local correction linear systems are square.

We performed a series of calculations with different discretizations (i.e.. different numbers
of patches and different Nystrém quadrature orders) and compared the results to the Mie
series results (shown in Fig. 1). For a given Nystrém quadrature order (which we henceforth

10 ‘ T T .

0.01 | HTE ;

Bistatic Cross Section (lambda)
o

0.001 ' : : : -
0 30 60 9 120 150 180

Angle (degrees)

FIG. 1. Bistatic cross section of a 1 j-radius circle for TM and TE polarizations computed by the Mie scries.
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FIG.2. Log-log plot of maximum relative error vs unknown density for 1 7-radius circle and TM polarization.
Each set of points is labeled by Nystrém order.

abbreviate to Nystrom order). as the size of the patches decreases. the difference between
the exact result and the FastScat calculation also decreases.

A more quantitative measure of convergence behavior is given in Fig. 2. where we have
plotted maximum relative error (defined as max[|o (0)/0re(8) — 11]. where ¢ (0) and o,.r(6)
are the calculated and exact cross sections. respectively. for =0 to 180° in 1° increments)
versus the density of unknowns for a first-kind integral formulation of the TM polarization
case. The number of patches spanning the circle ranged from 4 to 2048 and the Nystrém order
ranged from 2 to 12. One of the important features to note is that, with enough unknowns,
the data fit a linear trend line whose slope increases as the Nystrom order increases. Since
the discretization scale / is inversely proportional to the density of unknowns. a linear fit
on a log-log plot of error versus unknown density reflects the fact that the error scales
asymptotically as #”, where p (the order of convergence) increases with Nystrém order.
Large values of p signify a high-order algorithm. For the lower Nystrom orders. the slopes
of the lines connecting points of a given order are observed to be close to integers, namely
2 for order 2: 3 for order 4: and 5 for orders 6 and 8. The slopes for orders 10 and 12 are
still higher. although even at the highest sampling densities used, the discretization error
has not yet reached the asymptotic regime where each would be expected to have a slope
of 7.

The results for the second-kind integral formulation of the TM polarization case are
very similar. This should not be too surprising, since. despite the additional derivative, the
singularity of the kernel is no worse than log(r).

The corresponding plot for the TE polarization case, also using a first-kind integral
formulation, is shown in Fig. 3. In the TE case, however, the first-kind integral equation
involves the 2D hypersingular kernel. The effect of using a more singular kernel is that the
source must be represented more accurately in order to achieve the same accuracy in the
cross section. or equivalently, that an equally well represented source (i.e.. one employing
the same collection of unknowns) produces a less accurate value for the cross section. This
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FIG.3. Log-log plot of maximum relative error vs unknown density for 1 7.-radius circle and TE polarization.
Each set of points is labeled by Nystrom order.

is easily seen by comparing Figs. 2 and 3. For a given discretization. the calculated cross
section for the TE case is two or more orders of magnitude less accurate than that for
the TM polarization. Nonetheless. the TE polarization data also fit linear trend lines with
integer slopes when the discretization is fine enough. In order from lowest (2) to highest
(12) Nystrom orders. the observed slopes are 2. 1. 3. 3. 5. and 5.

Cross section calculations resulting from the second-kind formulation of the TE polariza-
tion scattering problem are generally more accurate than those of the first-kind formulation.
In fact. as the Nystrom order increases. they become nearly as accurate as those for the TM
polarization case. Again. the reason is that the singularity of the kernel for the second-kind
TE case is no worse than log(r). which is also the singularity of the kernels in the first and
second-kind TM polarization cases.

The process of improving a discretization by reducing the size of the patches is called
“h-refinement.” This is what has been exhibited in the previous two figures. Keeping the
number of patches fixed and increasing the number of parameters used to describe the
source distribution on each patch, on the other hand. is known as * p-refinement.”” With a
high-order Nystrém code such as FastScat. p-refinement is accomplished by increasing the
Nystrom order for a given meshing. In general. this is the preferred method for improving
a discretization for two reasons: one can avoid the usually tedious process of remeshing the
scatterer, and the accuracy of the answer usually improves faster this way. The data in the
next plot demonstrate this feature.

Figure 4 presents the TM and TE polarization data given in Figs. 2 and 3 in a different
way. The behavior of the calculation for each polarization under p-refinement is illustrated
by connecting points corresponding to a fixed number of patches instead of a fixed Nystrom
order. In some cases, data points corresponding to Nystrém orders higher than 12 have
been added. The fact that the data points on a semilog plot can be connected by nearly
straight lines indicates that p-refinement can achieve exponential convergence, as opposed
to the geometric convergence that was observed for /i-refinement. The convergence rate
gets higher the larger the patch size.
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FIG. 4. Semilog plot of maximum relative error vs unknown density for scattering from a 1 A-radius circle.
Points corresponding to different Nystrom quadrature orders for a fixed patch size are connected by lines (solid
for TM polarization and dashed for TE polarization) and labeled by the number of patches.

With regard to numbers of unknowns. the most efficient way to achieve high accuracy
is to use a high-order method on large patches. For example, with only four patches and
a 30th-order quadrature rule. it was possible to achieve an accuracy of 107° for the TM
polarization case and 10~ in the TE case. With this discretization, the unknown density is
about 10 unknowns/wavelength and the arc length of each patch is about 11 wavelengths.
For lower accuracies. the advantage of using large patches and high-order methods on the
circle is less clear. As a general rule, the optimum discretization is one that uses large
patches and high-order methods over smooth regions of the scatterer and smaller patches
over more highly curved regions.

A.1b. 20 A x 2 i ellipse. A 20 A x2 A ellipse is a 2D scatterer that is less symrmetric
than a circle. but is still smooth. It is a more challenging scattering problem than a 1 A-
radius circle for several reasons. not least of which is the fact that it extends much more
than a wavelength in at least one dimension. In addition. it is a good candidate problem for
applying the discretization rule described above.

In our code. the ellipse is described by the pair of parametric equations.

X =acosu,
(24)
Yy =bsinu.

wherea =104 and h =1 A. A sensible patching. which puts the highest density of patches
in the most highly curved regions and vice versa for the flatter regions. is obtained if the
patches cover equal increments in the parameter u. The circumference of a 20 i x 2 X ellipse
is about 40.64 A.

We used FastScat to compute the monostatic cross section of a 20 2 x 2 & ellipse dis-
cretized using several different combinations of patch number and Nystrém order. The

boundary conditions on the surface were either Dirichlet or Neumann, corresponding to
TM and TE polarizations. respectively.
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FIG. 5. Monostatic cross section of a 20 » x 2 2 ellipse for TM and TE polarizations. One quadrant of
observation angles is shown: the others may be obtained by considering the fourfold symmetry of the scatterer.

We do not have at our disposal a series solution for the cross section of an ellipse (which we
might otherwise use to compute an arbitrarily accurate reference solution). However. we can
still estimate the accuracy of the computed solutions by comparing them to the most finely
discretized solution. which we designate the “reference solution.” We computed reference
solutions for the TM and TE polarization cases by meshing the ellipse into 128 patches and
putting a 20th-order Gauss-Legendre rule (i.e.. 10 sample points) on each patch. We deduce
that these reference solutions are accurate to at least six decimal places. given the high-order
manner in which all the more coarsely discretized solutions are observed to converge to
them. Plots of the monostatic cross section versus incident angle for the reference solutions
are given in Fig. 5. As seen in the figure. the monostatic cross section for TM polarization
ranges from about 50 A looking at the broadside to less than 0.1 A looking at the tip. The
TE cross section is similar, although it is not as smooth a function of angle. In both cases.
the dynamic range of the cross section is more than 500.

The p-refinement behavior of the calculations on the ellipse using first-kind integral
equation formulations for both TM and TE polarization is shown in Fig. 6. Like the circle,
exponential convergence is observed and accurate solutions are most efficiently obtained
when the mesh consists of patches larger than a wavelength.

A2. Three-dimensional vector. As in the 2D scalar case. first-kind and second-kind
integral formulations were explored. For 3D vector scattering off a PEC scatterer, the first-
kind formulation is the electric field integral equation (EFIE) [17]

| 1
E(x) = fwfds' {—G(x. X)) + SVVGEX) I 25
4 3

an

and the second-kind formulation is the magnetic field integral equation (MFIE)

i ] ’ ’
Hi (x) = —;ﬁ x J(x) + }(ds'[V'G(x. x) x J(xX) ). (26)
2 s
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FIG. 6. Semilog plot of maximum relative error vs unknown density for scattering from a 20 7. x 2 7. ellipse.
Points corresponding to different Nystrom orders for a fixed patch size are connected by lines (solid for TM
polarization and dashed for TE polarization) and labeled by the number of patches.

where G(x. x') = exp(ik|x — x'|)/|x — x'| is the Helmholtz kernel in 3D. & = k|=w/c is
the radiation wavenumber. J refers to the electric surface current. E™ and H™™ are the
incident electric and magnetic fields. and the subscript ran means that only the vector
components tangent to surface at the field point are being used.

The EFIE and MFIE can be summed to form a combined field integral equation (CFIE)
having some of the same desirable properties as the CFIE in the 2D scalar case. Although
no CFIE results are reported in this paper. the same techniques apply.

Note also. that. while the results presented here are restricted to PEC scatterers. it is trivial
to generalize the method to the more general scattering problem of homogeneous regions
with smooth boundaries.

A.2.a. One-fourth i-radius sphere. Writing a code that correctly calculates 3D vector
scattering results is more difficult than writing a correct 2D scalar code. This is doubly true
if the code is designed to be high order. Therefore. it is particularly important to verify
that the output of a purportedly high-order 3D vector code actually converges to the correct
answer under both /- and p-refinement and that it does so in a high-order fashion. In this
subsection. we present results demonstrating that our 3D vector Nystrém code achieves
high-order convergence to the correct answer on a sphere.

A sphere is the ideal surface to use for benchmarking a high-order 3D vector code for the
same reasons that a circle is ideal for a high-order 2D scalar code—it is uniformly smooth
and the accuracy of computed results can be determined by comparison to the Mie series
solution. Since the size of the surface, and therefore the number of unknowns, grows in
proportion to r* for a sphere, as opposed to just r for a circle, memory limitations prevented
us from pushing the unknown density on a 1 A-radius sphere to the same extremes as were
possible on a | A-radius circle. Nonetheless, when we did run FastScat on a 1 A-radius sphere
with a wide selection of discretizations, we found that the results converged to the correct
answer just as one would expect for a high-order scattering code. To reach the asymptotic
regime, where the convergence behavior is more obvious, however, we chose the radius




644 CANINOET AL.

TABLE I
3D Quadrature Rule and Testing Function Parameters

Maximum
Nystrom Number testing Number
quadrature sample function testing
order points degree tunctions
2 1 0 1
3 3 ! 3
5 6 2 6
7 12 3 10
8 15 4 15

of the sphere to be Jl +.. which allows us to increase the unknown density fourfold betore

running out of primary memory (for storing the full impedance matrix). For this reason
alone we present the data for the % A-radius sphere.

The internal surface representation of the sphere corresponds to an ideal sphere and
its surface is assumed to be perfectly conducting. The coarsest patching of the sphere
consists of 20 identical triangular patches. formed by mapping the triangles of an inscribed
icosahedron onto the surface of the sphere. Finer meshes were generated by dividing each
of the 20 triangles into > nearly identical subtriangles. where ranged from 2 up to 10. The
distribution of Nystrom quadrature points on each patch was determined by a high-order
triangle rule [16]. The triangle rule orders that we used and corresponding numbers of
sample points are given in Table I. The number of testing functions (products of monomials
in the two surface parameters) and the maximum degree of the testing functions used with
each triangle rule are also listed in the table.

In all cases except Nystrom order 7. the number of sample points equals the number of
testing functions. resulting in an exactly-determined local correction linear system. In the
seventh-order case. the maximum testing function degree was chosen to make an under-
determined linear system.

Solutions for the bistatic cross section of the % A-radius sphere were computed with the
various discretizations and compared against the Mie series solution (shown in Fig. 7). For
a sphere this small. the cross sections for the two polarizations are similar (in terms of
smoothness and dynamic range). so we present the discretization refinement results only
for the 66 case. Cross polarization results are also not presented at all, although it may be
noted that such computed cross sections were extremely small (i.e., always less than the
co-polarized results by at least eight orders of magnitude).

The convergence behavior of the scattering results under /-refinement is shown in Fig. 8.
Refining the mesh for a given Nystrém order always improves the accuracy of the solution,
It is apparent for the lower Nystrom orders that the data approach linear trend lines with
integer slopes as the patches get smaller. just as they did in 2D. In the case of the EFIE,
the slopes of the trend lines for Nystrom orders 2 and 3 are both unity and in the case of
the MFIE. they are 2 and 3. respectively. For the higher orders, the slopes appear to be
increasing. but it is not as clear what their asymptotic values will be. For Nystrém order 5,
the last pair of points produce slopes close to 3 and 5 for the EFIE and MFIE solutions.
respectively. In all cases. the solution at a particular discretization obtained by using the
less singular kernel (i.e.. the MFIE) is more accurate.
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FIG. 7. Bistatic cross section of a 1 a-radius PEC sphere for 66 and ¢¢ polarizations computed by the Mie
series.

The behavior of the sphere results under p-refinement are shown in Fig. 9. The observed
p-refinement behavior is similar to that in the 2D scalar case. The fastest convergence is
usually achieved by applying a high-order quadrature to a coarse meshing. One notable
difference from the 2D scalar case is that the 3D vector calculation requires a higher density
of unknowns to achieve a comparable maximum relative error in the bistatic cross section.
The jaggedness of the p-refinement curves for the EFIE data may be explained by reference
to the /1-refinement plot, which shows that the 2nd- and 3rd-order results have nearly the same
accuracy. and that the 7th-order results are actually less accurate than those for Sth-order.
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FIG. 8. Log-log plot of maximum relative error vs unknown density for % A-radius PEC sphere in 66 po-
larization. Points obtained with different meshings but the same Nystrém order are connected by lines. A solid
(dashed) line indicates use of the EFIE (MFIE) integral formulation,
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FIG. 9. Semilog plot of maximum relative error vs unknown density for scattering from a } x-radius PEC
sphere. Points corresponding to different Nystrém quadrature orders for a fixed patch size are connected by lines
(solid for MFIE and dashed for EFIE) and labeled by the number of patches.

For Nystrom orders higher than about 8. problems related to ill-conditioning arise in the
EFIE formulation. Although the increasingly ill-conditioned nature of the local correction
linear system is a contributing factor, the more important contribution probably comes from
the fact that the EFIE is especially susceptible to conditioning problems when the Nystrém
sample points get too close together. Unfortunately. this is exactly what happens for the
higher-order triangle rules. As the order increases. the quadrature points tend to bunch up
near the edges and corners of the triangle. It may be possible to overcome this problem by
inventing different high-order triangle rules with better sample point spacing and by using
a better conditioned integral equation formulation such as the MFIE or CFIE (combined
field integral equation).

A.2.b. 2 5 x 2 4 x 0.2 4 ellipsoid. As an example of a smooth. but less symmetric 3D
scatterer. we next consider a PEC ellipsoid with principal axis diameters 2 4.2 4. and 0.2 A.
We computed the monostatic cross sections of this discus-shaped scatterer in 66 and ¢¢
polarizations using a MFIE formulation and an eighth-order quadrature rule. which put
15 points on each patch. Four different meshings. comprising 20, 80. 180. and 320 patches.
were tried. Each meshing was tailored to put smaller patches in the vicinity of the r =1 A
equator, where the one of the radii of curvature is small. and larger patches everywhere else.
where the surface is relatively flat. The number of unknowns distributed over the 6.47 A2
surface of the ellipsoid in the four cases ranged from 600 with the coarsest meshing to 9600
with the finest.

As we did with the ellipse in 2D, we can designate the solution computed with the
finest discretization to be the reference solution and obtain accuracy estimates of the other
solutions by comparing them to this reference solution. Figure 10 shows the reference
solutions for the 66 and ¢¢ polarization cases.

Differences between the reference solution and the other. less finely discretized solutions
are shown in Fig. 11. As expected. the accuracy of the solution improves as one refines the
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FIG. 10. Reference solutions for the monostatic cross section of a2 % x 2 & x 0.2 & PEC ellipsoid in #¢# and
¢¢ polarizations. At 0 the observer is looking at the flartest part of the ellipsoid: at 90 he is looking edge on.

discretization. It should also come as no surprise that the solutions are also most accurate
near - and 1807, where the cross section is highest. What is particularly notable about this
plot. however. is the fact that the error in the cross section decreases by orders of magnitude
when one reduces the (linear) size of each patch by factors of 2 or 3. Such large reductions in
the error are a direct consequence of our using an exact surface description and a high-order
rule (8th-order. in this case) on each patch.

1072
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FIG. 11.  Semilog plot of the differences between cross sections computed using meshings consisting of 20,
80. and 180 patches. and a reference cross section computed using a meshing consisting of 320 patches. The
asymmetry of each curve reflects the fact that the meshings did not possess reflection symmetry.
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B. Run-Time Performance Comparisons

In this section we compare the run-time performance of our high-order Nvstrom im-
plementation of FastScat to that of two method of moments scattering codes. The first
comparison code is an earlier. high-order Galerkin implementation of FastScat [20]. The
second is a low-order code (RWG basis and testing functions on flat facets) called FISC
[21]. We ran each code under comparable conditions to obtain solutions for the bistatic
cross section in the 66 polarization of three different size PEC spheres. The high-order
Nystrom discretizations were constructed using an eighth-order quadrature rule (15 sample
points per patch) and fourth-degree testing functions for computing local corrections. The
high-order Galerkin discretizations were constructed from the same surface mesh using
patch-based. polynomial (in the parameterization) basis functions up to degree 4 to give
the same number of unknowns per patch. namely 30. The surface mesh used by FISC was
necessarily different from that used by both versions of FastScat because. with an RWG
discretization. one unknown is associated with each edge rather than multiple unknowns
being associated with each patch. Nonetheless. its surface meshes were constructed to main-
tain the density of unknowns at about 7.7 unknowns/wavelength. the same as for the both
FastScat discretizations. All computations were performed using a dense matrix fill. an
LUD solver. and a MFIE formulation.

Table II gives a summary of the results. The reported times are run times on a SPARC-10
workstation with 512 MB primary memory. The total run time is broken into setup time
(which includes the time spent setting up the problem and filling the impedance matrix) and
solve time (which includes the time spent performing the LUD and solving for the bistatic
cross section at 181 angles).

In comparing the results from the two high-order implementations of FastScat, two fea-
tures are especially noteworthy. The first is that the high-order Galerkin result is more
accurate by about a factor of 5 than the high-order Nystrom result. The second is that use
of the Nystrom discretization can speed up the setup phase of the computation enormously.
with the speedup factor increasing as the number of unknowns increases. The observation
that the high-order Galerkin code computes results somewhat more accurately than the
Nystrom code is consistent with our experience computing cross sections for other scatter-
ers. both in 2D and 3D. It is compensated. however. by the fact that the setup phase (and
to a lesser extent the solve phase) runs much faster using the Nystrém code. Furthermore.
the factor of 5 difference in accuracy is actually less significant in this case than it would

TABLE 11
Nystrom vs Galerkin Performance on PEC Spheres

Radius No. of Setup Solve RMS
Scattering code () unknowns time (s) time (s) error (dB)

FastScat (Nystrom) 0.9 600 74 36 0.35
FastScat (Galerkin) 0.9 600 972 88 0.07
FISC (Galerkin) 0.9 600 83 42 1.28
FastScat (Nystrom) 1.8 2400 539 2742 0.26
FastScat (Galerkin) 1.8 2400 8177 3395 0.05
FISC (Galerkin) 1.8 2430 873 2255 0.61
FastScat (Nystrom) 27 5400 1953 31735 0.097
FastScat (Galerkin) 2.7 5400 38803 36152 0.021

FISC (Galerkin) 2.7 5880 8230 28795 0.723
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be if we were comparing low-order codes. Given the O(/:°) convergence rate expected of
an eighth-order quadrature rule. it should be possible to recover the factor of 3 in accuracy
with further /-refinement by a modest 20%.

The high-order Nystrom code computes more accurate answers than the low-order
Galerkin code (FISC) in all cases. For the spheres considered here. this is largely due
to the fact that FISC uses a low-order surface representation. The high-order Nystrém code
also requires less setup time. an advantage that grows as the problems get bigger. Even a
comparison based on total solution time shows the high-order Nystrém implementation of
FastScat to be more efficient for computing accurate answers.

Finally. it is useful to note that an equivalent Nystrém discretization exists for everv
method of moments discretization and vice versa [22]. so it is possible. at least in principle.
to eliminate the observed accuracy discrepancy between the two versions of FastScat by
implementing a Nystrém code whose discretization error precisely matches that obtained by
the Galerkin code. We have not attempted to do this. but suspect that to do so would entail
additional complications and computations that would negate the substantial simplicity
and efficiency of the present implementation. On balance. we find the high-order Nystrom
method in its present form preferable to the high-order Galerkin method for solving integral
equations. especially when one adds in its other benefits such as reduced implementation
complexity and potential for significantly improved FMM performance.

V. SUMMARY

The standard Nystrém method is a simple and efficient mechanism for discretizing inte-
gral equations. We have shown how it can be adapted to provide a high-order discretization
of the boundary integral equations of wave scattering in 2D and 3D. which have singular
kernels. Numerical results obtained with a software implementation of this method show
that the algorithm can achieve high-order convergence to the correct answer for scattering
cross sections in 2D and 3D. We also demonstrated that a high-order Nystrém code consid-
erably reduces the CPU time cost of a scattering calculation by comparison to a high-order
Galerkin code. especially the precomputation time cost. The high-order Nystrom code also
outperformed a well-tuned. low-order Galerkin code (FISC) in terms of solution accuracy
and total run time. Demonstrations of how a high-order Nystrém code can be used in con-
junction with the FMM to reduce the memory and CPU time requirements of solving large
scattering problems will be the subject of a future publication.

APPENDIX

A. Local Correctioris

Eleven different kernels arise in boundary integral equation formulations of 2D scalar,
3D scalar. and 3D electromagnetic scattering:

2D & 3D Scalar 3D Electromagnetic
G(r)
, G(r)(t(x) - t'(x"))
i - V'GQo)
t(x) - (V'G(r) x t'(x'))
fi-VGr)

(t(x) - VIV'G(r) - t'(x'))

(f- VY@ -V'G(r))
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where

CH."(kr) in 2D.
Gryi=<{ | (27
— in 3D.

!
r is the magnitude of the vector r=x"— x from the field point at x to the source point
at x': k is the wavenumber of the waves: fi and A’ are the unit normals to the surface at
the field and source points. respectively: V and V"’ are gradient operators for the field and
source coordinates. respectively: and H(‘," refers to the zeroth order Hankel function of the
first kind. defined by H(‘]“( ) =Jo(x)+1Yyx). where J,(x)and ¥, (x) represem nth-order
Bessel functions of the first and second kinds. respectively.

For the 3D electromagnetic case. the source and excitation are surface tangent vectors so
it becomes necessary to compute local corrections for four scalar kernels. one for each of the
four combinations of (two) independent surface tangent vectors at the field point and (two)
independent surface tangent vectors at the source point. These surface tangent vectors at
the field and source points. represented by t(x) and t'(x'). respectively. are included as part
of the 3D electromagnetic kernel in recognition of this fact and for clarity of presentation.

In this section. we show how to compute local corrections for each of these kernels. We
will make use of the vector calculus identity [23]

(- V)R- Vg(r))

I

(R-ANV - Vigr) —(Ax V)@ x Vgur)) (28)
(A-A)kg(r) — (A x V) - (R x V'g(r)). (29)

where the second line follows if g(r) obeys the homogeneous Helmholtz equation

2} hl

(V2 +kgr) = 0. (30)

This identity allows one to convert between double normal derivative and double tangential
derivative operators on the Green function.

A.l. Two-dimensional scalar.

Ala. Gu).
I i 1
Gir) = ZH(‘,“(I\T) = Jothr) = 2Yotkr). 31
S—— N——
regular singular

This kernel may be written as the sum of a regular part and a singular part. It is necessary
to compute local corrections only for the singular part because the regular part will be
efficiently integrated by the underlying high-order quadrature rule. The function Yo(kr)
contains a log(r) singularity. Therefore. one can use “lin-log™ quadrature rules [24] to
efficiently compute local correction integrals when the region of integration contains the
field point, and Gauss—Legendre rules otherwise.

Alb. A -V'G(r),

regular regular
regular oA ~"— singular
- i.rd YT Jikr) LR =
W VG = _—Go ) = —ZA () —Z—' + Z_’f krYykry.,  (32)
r - 2

~

~~
regular singular
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The first term is regular: the second is singular. The second term is singular not because
its value diverges at the origin (in fact. lim, o(A - r/r>)krY,(kr)=1/7 R. where R is the
radius of curvature of the surface at the field point). but because its higher derivatives do.
The singularity is still a log(r) singularity. so local correction integrals can be computed in
the same manner as for the previous kernel.

Alc 7-VG(r).

regular regular

FEQUIAT e N ~— singular
n-rd I ™~ Jitkr) 10-r —
h-VG(r)=———G(r) = k-1 = Y ko). 33)
-VG(r) . er(l) Fheen) — 157 bk (33
g:lur singular

This kernel is identical to that for i - V'G () with A’ replaced by —h and it has similar
properties.
Ald (A-V)(R"-V'GO).

(A- V)@ - V'G(r))

_ (A-r)@'-r) /1dG(r)y d*Gr) (h-/)YdG(r) (34)
- re roodr dr: r dr i
regular regular
R regular e s TE QU AT
ik | " Jikr) (R DR 1)
= — | (n-n — 5 ,2(/\1)
4 kr r-
regular
+ (A- V)@ - V'GR(r)). (35)
hypersingular
Applying the derivatives to the real part of G (r). namely G () = —}Yo(kr). produces a

term that is not merely singular but hypersingular. When convolved with a regular function.
this term is not (in general) integrable because it diverges like 1/7-2, relative to the field point.
The following discussion shows how to manipulate it into a form that allows numerical
evaluation when the region of integration contains the field point. When the region of
integration does not include the field point. Gauss-Legendre rules may be used.

The convolution of (fi - V)(R' - V'GR(r)) with testing function f(x') is

[ dra- 9@ veten ) (36)
c
Strictly speaking this is not a proper integral unless it is assumed to represent the limiting
value as the field point approaches the surface from off the surface. We implicitly make
this assumption throughout. Using the vector identity (29) and the fact that G® () obeys
the homogenous Helmholtz equation when x is not on S, we can convert the double normal
derivative operator to a double tangential derivative operator:

/d/’[kz(ﬁ AGRG) — (i x V) - (@ x VGReNIF(X). (37)
C
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In2D. we can rewrite the second term even more explicitly in terms of tangential derivatives.
obtaining

/dl’[k:(ﬁ AGRe) — (- VGReN D). (38)
JC

where t and t’ are unit tangent vectors at the field and source points. respectively. The first
term has a log(r) singularity. which we already know how to integrate numerically: the
second term is hypersingular and requires further manipulation.

The gradient operators V and V' commute with the unit tangent vectors ' and i. respec-
tively. so we can rearrange the factors of the second term and integrate it by parts as

—/d/‘(f-V)(i’~V’GR(r)>f(x’)
C

= —/dl’f(x')i’-v’(i-VGR(r)) (39)
C

Il

—/Cdl’f'.v'(f(x’)(i~VGR(r)))
+/Cdl'(f’ VAN VGRo). (40
The first integral on the right-hand side of (40) is

~—/Ca’l'f’-V'(f(x')(f~VGR(r)))

= —/dl’-V’(f(x')(f-VGR(r))) 41
C

—(fed VGRS (42)

i.e.. since the integrand is a total derivative. the value of the integral is a difference of values
at the endpoints. Rearranging factors and using

VGRr) = -V'GFir). (43)

we can rewrite the second integral as
' —/C dI'v'GE oy - [(@ - V' F . (44)
In this form, the integral is not yet evaluable because V'GR (1) diverges like 1/r relative to

the field point. We can make it integrable by adding and subtracting a smooth function that
matches the integrand at the field point. Specifically, let us write (44) as

—/d/’v'c"’(r)-[i(f’-v'ﬂx')) —i'(i.V'f(x))]—/dz'v/c’?(r)-[i’(iv/f(x))].
C C

(45)
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wheret - V' f(x')and t - V' f (x) represent tangential derivatives of the testing function f(x")
evaluated at the field and source points. respectively. The first integral in this expression is
integrable because the zero of

[td - Vo) —Tid V' Fixn) 46)
at the field point cancels the pole from V'G® (1) at the field point. leaving a singularity no

worse than log(r) relative to the field point. By rearranging factors. the integrand of the
second integral can be shown to be a total derivative. so that

_/ dl'V'GRery - [td- V' fix))]
C
= —/dl’i’~(V’GR-(;-)(f~V'.)"(x))) 47
C
= —[GRu)t- vf(x))]&. (48)

Putting the various terms together. we arrive at the following numerically tractable expres-
sion for the integral needed to compute local corrections for the hypersingular component
of the kernel

/ dI'tk* (- AYGR f(x) = VGRe) - [id -V FX) =T d- V' Fo)])
C
—LfeO(E-VGR o) + GRond- v Fexng. (49)

or. substituting for G (r).

IS Y (kr .d ~d
- /dl’{(ﬁ-ﬁ’)Yo(kr)f(x’)+ ! ')f~ {ti(x’)-t’—i(x)”
4 Je kr

1T LY k) ) df  1¢ .
— k2 i-f — Yothry == . 50
4{ o £) f(x') = Yol I)d[,(X)L] (50)

A2, Three-dimensional scalar.
A.2.a. G(r).

B e__ I,sin(.kr) N cos(.kr). 5D
1A 1A 1

regular singular

As in the 2D scalar case, this kernel may be written as the sum of a regular part and a singular
part. It is necessary to compute local corrections only for the singular part because the
regular part will be efficiently integrated by the underlying high-order quadrature rule.
The singular term contains a 1/r singularity. Computing local corrections for the singular
part requires evaluation of integrals of cos(kr)/r times polynomials in the parameters
u=(u'.u?) used to describe the surface. When the region of integration contains the field
point. itmay be subdivided into triangles with the field point at one vertex, and the integration
may be performed by using the Duffy transformation [25] and Gauss—Legendre product
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rules on the subtriangles. Otherwise. one can apply efficient quadrature rules for smooth
functions such as high-order triangle rules [16].

A2b. A" -V'Gry.
Do n-rd (ikr —e™ a'-r -
A-VGr)y=——Gu)= 3 (32)
rodr r- r
regular singular
e regular regular ,—-/‘\—-\
s (cos(hr) — S s . (ol
=ik - (R - 1) — (CoS(hr) + (krysintkr)) ——-. (533)
(kr)- PR
regutar singular

In2D. (A" r)/r- is a regular function with a removable singularity at the origin. In 3D. the
singularity is removable only if the principal radii of curvature of the surface at the field
point are the same. Otherwise its limiting value depends on the direction from which the
origin is approached. Nonetheless. local correction integrals can be computed etficiently by
means of triangle subdivision and the Duffy transformation.

Alc. A-VG(r),

regular singular
— regular regular e Nt
. ) ,(cos(kr)—%f”)f?’\ - (h-r)l
i-VG(r) = —ik e (- 1)+ (cos(hr) + (hr)sin(hr)) — - 54
)2 2 .
regular singular

This kernel is identical to that for i'- V'G(r) with &’ replaced by —n and has similar
properties.
A2d (a- V)@ - V'G(r)).

(- V(@R - V'G(r))

L (L =ik, . N krs 4+ 3ikr — 3 » _
=(A-A") T er +m-nihn| ——e—— ) ¢ (35)
- re
regular
regular _
(——‘“"“k"’ — cos(kr)) ’_re::u;ur , '\in[,m - 3<“"(‘f"(;,:§>m-)> ’__’regu‘mr
=ik? b - (h-0) + &° - (A-r)(R 1)
(kr)- (kr)-
regular
+ (- VYR - V'GR(r). (56)

hypersingular

Applying the derivatives to the real part of G (). namely G® (1) = cos(kr)/r, produces a
term that is not merely singular but hypersingular. When convolved with a regular function,
this term is not (in general) integrable because it diverges like 1/r3 relative to the field point.
The following discussion shows how to manipulate it into a form that allows numerical
evaluation when the region of integration contains the field point. When the region of
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integration does not include the field point. standard. high-order rules for integrating regular.
two-parameter functions may be used.
The convolution of (it - V)(f"- V'G®(r)) with testing function f(x') is

/ds’(ﬁ VIR - V'GRx X)) Fix) (37)
)
or
/ds’[k:(ﬁ ANGRxX) = (A X V) (0 x VGRx x N Fx). (38)
N

where the second form follows from Eq. (29). As in the 2D case. we implicitly assume a
limiting procedure whereby the field point approaches its final destination on the surface
from off the surface. The first term in brackets is only singular like 1/r: we already know
how to deal with such expressions. It is the second term that requires further attention.
Write this term in component form using the Levi-Civita tensor €;;1 and manipulate the
expression as shown using the fact that x and x’ are independent. Summation over repeated
indices is implied.

——/ds'((ﬁ x V) (A" x V'GRx. x))) F(x)
s

=—(fix V) /ds'(ﬁ' x V'GRx.x) fx) (59
Js
= —6,’_/'1\-11','81\ [/dsl(fll X ‘V,GR(X. X’))f(xl):' (60)
Js " i
= —€j4h; {/ ds'(R' x V'(3:GR(x. x’)))f(x')] (61)
s i

]

—€ijxl [/a's'ﬁ' x V'(f(x)3:GRx. x'))J
Js

i

+eijpn; {/d‘v'akGR(x. X (A x V'f(x'))} (62)
Js

The last step shows the result of integrating by parts. Letting
Y= f(x)9GRx.x. (63)
we apply an adjunct to Stokes’s theorem.
/ds(ﬁ x Vi) =7{ dly (64)
JS N

to the part of the first term inside the brackets. to get

—€ i {/ ds'i’' x V'(f(x)3,GR(x. x'))}
s

i

= —€iin; V dl' f(x)8,GRx. x’)} (65)
a5

i
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_6'-""”’7( dl’ fix18,GRx.x") (66)
JaS

l

—?[ dl - (h x VGR(x. X' fix'y. (67)
as

which is integrable. To evaluate the rest. use the fact that
VGRx.x) = -V GRx.x) (68)
to write

€kl |:/ dS(aAGR(x. X/)(ﬁ’ X V'f(\l))
S

I

=- /ds'ak'GR(x‘x')q,_,(ﬁ' x V' f(x')n; (69)
Js

= - /ds’V'GR(x. X) - [(A x V' f(x") x A). (70
Js

At the field point. the vector in brackets becomes
AV IX)NxA=-Ax AxVfx)= Vi fix). (71)

Some notation from differential geometry is useful at this point: 9,,x = dx/du* is the
derivative of the surface with respect to surface parameter &, 1s the metric tensor given
by d,,x - d.x: g¢"" is the inverse of g2 g 1s the determinant of &t and 8;1 [ represents the
derivative of f with respect to u” . i.e.. 3, f=3f(x'(u))/du".

Thus. in the language of differential geometry. the vector in brackets becomes

atd’ X'
N Y VTS I
0 fox =g"o fox = (72)

Jet)

when o is defined as
Vem)ghto! f (73)

evaluated at the field point. Therefore. we may write

—/ ds'V'GR(x.x') - [(A" x V' f(x')) x /]
s

/d VGRx.x) { (R x V' f( ’)>+°’"3[¢X'J
= R X.X)-|InXx(n x X ———
s Velu)

/ Is' V'GR(x.x) [a"a,"x’} (74)
- as X. X ) - .
s Vvg(u)

The first term is integrable because the zero of

~ (.; ’f( /)) 8 l’l :/
\/g(u) )
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at the field point cancels one of the two poles from V'G®(x. x') at the field point. The other
term may be rewritten as

—/dS'V'GR(x. x') - [a“a‘;x}
Vve)

s
/d "V.GRx.x) {aﬂa‘l‘xl (76)
= - s M X.X)- ‘
s ‘ Ve
S R , akd X'
=—/dsV- G (x.x")
s g(u) /°
+a* /ds'GR(x X))V, . {d"—x} (77)
s ' Ve ]

where the last step shows the result of integrating by parts. The part of the first term in
parentheses has no normal component so it can be converted to a boundary integral using
the divergence theorem for open surfaces (see Appendix B):

/d A (GR( ’)aua‘/‘XI)
— S woe X. X )———
s ] /g(u)

f(dl’ ) <G”< ’>““a"‘x'> (78)
= — Xn)- X. X
as Vv g(u)
e . a1 GR(x. X))
= - dl' - |f" x ("9 X') | ——c. (79)
i (@) =

The second term is zero since (see Appendix C)

v, .| £ =0.
' L/g(u)] 0 (80)

Putting the various terms together, we arrive at the numerically tractable expression for
the integral needed to compute local corrections for the hypersingular component of the
kernel.

' ’ RPN N R g ’ " ~R ’ ~ A7 [ ’ auaillx,
/ds ARG X (X)) + VGRx.x') - |A x (A x V' f(x))+ o]
s sl

—f' dl. ((ﬁ x VGR(x.x) f(x) + (/' x (a“a’x’))m> (81)
45 . . Vg(u)
where

of = /gu)gha) f (X' (w)). (82)

evaluated at the field point. The first integral is a surface integral whose integrand diverges
no worse than 1/r near the field point: the second is a boundary integral of a regular function
(so long as the field point is never situated on the boundary).
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A.3. Three-dimensional vector.

Ada Gortx) - t'(x)).

This kernel is identical to G(r) in the 3D scalar case. except that the regular function
with which it must be convolved is the inner product of a tangent vector t(x) at the field
point and a tangent vector t'(x’) at the source point. Four sets of local corrections must be
computed for each field point since there are two independent tangent vectors at each field
point and two at each source point.

A3Db tx) - (V'G(r) x t'(x)).

t- (V'Gr) x t'(x))

e (X X tx) -1
¢ -

= (ikr = 1) —_— (83)
r- o
regular .
/—T’— recular
ML cos(kr) P
= ik3(—“———7———l((t(x) x t'(x'))-r)
(kr)-
regular
singular
regular
- t(x) x t'(x)) -r) 1
+ (cos('kr)-i—(kr)sm(kr))(( - -, (84)

2 ’

singular

The analysis of the singular component is as follows. We can write t(x) in terms of surface
derivatives at the field point

t(x) = 7"9,x (85)

with some pair of coefficients £#. = 1. 2. Letting u’ denote the parameterization of the
source point relative to the field point. we can write the expansions for t'(x') and r(x’) about
the field point.

) =73 X" = £"(3,X + 0,0, Xt +--). (86)
for some other pair of coefficients £” with p = 1. 2 and
rX) =0, Xxu"+---. 87)
Then

((4(x) x (X)) 1) = T"EP (0,X X 8,X + 3, X X 8,0, xu'" + - ) (OxuT+---) (88)
= CHEM((0,x X 3,05%) - 8 X0 u T 4+ (89)

Since the leading term in 1/ is also second order in u'. the ratio ((t(x) x t'(x')) - r)/r? does
not diverge in the limit as » — 0. However, like the factors (A" - r)/r? and (fi - r)/r* from the
3D scalar case. this ratio is not a regular function unless the principal radii of curvature at
the field point are identical. Computation of local correction integrals for each combination
of tangent vectors at the field and source points proceeds as in the corresponding 3D scalar
case.
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A3, (8x) - VYV'Giry - t(x)).

(t(x) - V)(V'G(r) - t'(x))

L 1=ikr\ , kre+3ikr =3\
=(t-t) e+t | —— ) (90
3 r
regular
regular
N regular sinckr 2 contkr regular
| o) B -3 (Sae) B
=ik’ BT LSt s (t-r)(t'-r)
regular
+ (- VIV GR 1), (91)

hypersingular

The result is very similar to that in the 3D scalar case. The real part of G(r). namely
GR(r)= cos(kr)y/r. produces a hypersingular term that is not (in general) integrable be-
cause it diverges like 1/ relative to the field point. We now show how to manipulate it
into a form that can be evaluated numerically when the region of integration contains the
field point.

Reformulating the integral of the hypersingular term begins with an integration by parts:
-/Sds'(t(x) VNV GR(x.x) - t(x))
=/S.ds’t'(x’)«V"‘(t(x)-VGR(x. x)) (92)
= /Sds’vl’1 ) (tx) - VGR(x. x'))]
- /Sds'(t(x)~VGR(x. XNV, - t'(x)). (93)

The first term on the last line can be converted to a boundary integral using the divereence
theorem for open surfaces (see Appendix B) and the fact that the argument of V- is tan-
gential to the surface:

/dS’V{\‘[t’<x"><t<x>-vc'*(x. x))] =]{ dl@ - (x)(tx) - VG (x.x)). (94)
N as
The second term is
—/ds’(t(x) - VGR XNV, (X)) = /ds’V’GR(x. X)) - [tV - t'(x')]. (95)
N N

Write this as

/d 'V'GF(x. X)) [t< V! - 2 ”‘x}+ /d 'V'GRx. X)) [M%XIJ (96)
s X. X)) [tx)N(V, - t(x)) — s X.X')- .
s ! vgu) s g(u

~—
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where the constant * is chosen to make t(x)(V' - t'(x')) and o® d9,X'/V/gw) equal at the
field point. In other words. o* is defined as

vemgh (txy- 3 x'HV - t'x)) (97

evaluated at the field point. The first term is integrable because the zero of

[ WY - t(x')) aﬂa“x} 98)
XNV - t(x)) — (
Ve

at the field point cancels one of the two poles from V'G*®(x. x') at the field point. As shown
in the 3D scalar case. the second term reduces to the boundary integral:

. F et ~R ' aua"le
/ds VGHx.x)-
s g(u)

GR(x.x)
=¢ dl'-[A' x ("3 x')] ———= (99)
f;s [ \ ! )J /_g(ll)
& , ota X
=%d1e- G (x.x) . (100)
BN g(u)

Putting the various terms together. we arrive at the numerically tractable expression for
the integral needed to compute local corrections for the hypersingular component of the
kernel,

o' ~R ' Crs! a“B,’lx'
/ds VGTx.x) - [ tx)(V] - t(x)) —
Js ' gu)
’oat R ’ ’ 7 R ’ Q'“a;lx'
+ di'e - [ (t(x)- VG x. x'Nt'(x) + GFx. x) — |, (101
JiS ve)

where
@ = Vewe (tx) - 9;x) (V) - t(x) = Vewgh (tx) - 9,x) (g7 9/t - 3.x'). (102)

evaluated at the field point. The first integral is a surface integral whose integrand diverges
no worse than 1/r: the second is a boundary integral of a regular function (so long as the
field point is never situated on the boundary).

If. as suggested in Section I11.C.3. the uth tangent vector at the field point (with surface
parameter ug) is given by

t, (u) = 3,x(u) (103)

and the vth vector testing function associated with scalar testing function f*'(u) is given
by

— dx(u) th) u)

V()

' (u) (104)



HIGH-ORDER NYSTROM DISCRETIZATION

then Eq. (101) simplifies to

/ds' VGRx.x) - (8,x0, f () — 3,x'9. f* (up)) / v/ gtu)
s
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+ f dl' e . (GR(x. x’)al',f‘k’(uo)a;x'-f- (8, x - VGR(x, X)) P wd )y g
us

B. Divergence Theorem for Open Surfaces

Substitute

into Stokes’s theorem

/dsfr(VxB):f{ dl-B
s s

/dsﬁ'(Vx(ﬁxA))
S

to get

=/dsﬁ-[ﬁ(V-A)—(ﬁ-V)A—A(V~ﬁ)+(A-V)ﬁ]
s

= /dS[(Vu “A)— (- A)(V - h))
s

=?{ dl- (i x A)
s

= ¢ (dlxn)-A
Jas

=%d1é-A.
as

where we have used the definition of tangential gradient

V=V -#h- V)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

and the following equation which relates the vector line element dl and the surface normal

fi to the scalar line element d/ and the unit edge vector &,
dl x i =dlé,
and the observation that
i-[(A-V)A] = [(A-V)A]-h = %(A-V)(frﬁ):O.

In other words, the divergence theorem for open surfaces is

-/ds[(VH “A)—(A-A)V i) = f
s ]

dlé'A=?{ (dl x h) - A.
4s 35S

(114)

(115)

(116)
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which simplifies to

/dS(V~A)=fd/é-A=%(dl><ﬁ)-A (117
S S Jas

when A is evervwhere tangential to S.

C. Proof that V, - [3'x'//gi)] =0

Note.  Summation over repeated indices is implied:

V) = ()
o = . X
! g(u) Vgu) r

o
=" (A= ) - ax
¢ “<¢gﬂ1>> !

m(a;a,;x' 8"lx' 3 el )) .
—_ ag u . 1x
Ve 2./g)? !

(oo — 20X e g ')>
=1 X0 x — L —L_(2¢(u x - X
Ny A 2gau) R GX GGy

8”7 i
- _gﬁ_ll_)(apx ’ aoaux - gllﬁgaﬁaax : aoaﬂx )
1
Tl Y o afar N
== (g779,x"-3,8,x — 8¢ 9, X"+ 3, 0,X)
1
glu
I Tt Ay T At
= (8778,x" - 9,8, x —g"3'x" - 9,0/x') = 0.

ot o

I
e

]

I

]

(8779,x 8,8, x" — g""o.x - 8, 3,x)

a v

g
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A Prescription for the
Multilevel Helmholtz FMM

MARK F. GYURE AND MARK A. STALZER
HRL Laboratortes

L4

¢

¢

The authors describe a multilevel Helmholtz FMM as a way to compute the field
caused by a collection of source points at an arbitrary set of field points. Their
description focuses on the algorithm’s mathematical basics, so that it can be
applied to a variety of applications.

he fast multipole method for the scalar
Helmholtz equation, (V2 + ¥ = 0, is com-
monly used to compute acoustic- and elec-
tromagnetic-scattering cross sections.!*?
Ronald Coifman, Vladimir Rokhlin, and Stephen
Wandzura® described a single-level scheme, which has
been implemented in two and three dimensions for scalar
and vector scattering problems.* The method has been
subsequently extended to multiple levels, again with an
emphasis on electromagnetic scattering.’”*®
In this article, we’ll focus on the basic multileve]l FMM
algorithm as a way to quickly compute the field caused
by a collection of Helmholtz source points at an arbj-
trary field point. To keep our description of the imple-
mentaton simple, we'll assume that the field is desired
at each source point, as would normally be the case when
constructing an impedance matrix for a physical prob-
lem. Through this basic, but detailed, description, we

hope to make the multilevel Helmholtz FMM more ac-

cessible for a variety of problems.

The mathematical preliminaries

Previous research on the FMM has taken two ap-
proaches. The first? starts from the standard integral
equation for a field arising from an arbitrary source dis-
tribution assumed to be localized to surfaces:
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W(r ).

¢(r)= | dr

N

M

This approach then manipulates the integral equation
by substiruting two identities: one, a form of the Gegen-
bauer addition theorem, and the other, a plane wave ex-
pansion for spherical Bessel functions. The result is an
expression for Equation 1, from which it is straightfor-
ward to construct an algorithm for computing the field in
O(N*") operations, where N is the number of unknowns
describing the entire source distribution. Extension to a
multilevel FMM that scales as O(Nlog® N) is also possi-
ble through this approach.

The other approach, taken by Rokhlin in the original
Helmholtz FMM paper” and the one we use here, uses
the language of multipole expansions that are valid ex-
terior or interior to groups containing an arbitrary num-
ber of source or field points. In this approach, the essen-
tial point is that diagonal transforms exist for translating
the origins of both interior and exterior expansions of
charge distributions as well as for convertng exterior ex-
pansions to interior expansions.

Rokhlin has already described the mathematical details
involved in constructing exterior and interior expansions,
and has provided proofs of the various theorems involv-
ing translation operators.? We’ll now provide a concep-
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tual framework in which manipuladon of off-
centered expansions through diagonal transla-
tion operators and efficient transforms is a com-
pletely natural way to view the FMM. This
approach is not only more general, but also bet-
ter-suited for describing the multilevel FMM. In
particular, it also makes clear why the interpola-
ton and filtering steps that are necessary in the
multileve] FMM must be treated carefully.

Multipole expansions and translation
operators

Consider two well-separated spheres of radius
R, and R;, each containing a collection of points.
We'll take the points inside R, to be Helmholtz
point sources and the points inside R, to be field
points at which we would like to ev:i:i:te the
field caused by the collecton of sourcc: in R;.
This field, written as a multipole expansion?
valid outside R, is

y(r)= ; Binbi(k7)¥ in(6,9), Q)

where 7, 8, and ¢ are relatve to a coordinate sys-
tem centered in Ry, b{kr) are spherizai Hankel
functons of the first kind, and ¥,,,(6. o) are the
normalized spherical harmonics. We'll refer to
this expansion as an exterior or h-expansion.
Similarly, we can write an expression for the
field valid inside R»:

¢(r)=};amjz(kr)m(9,¢), 3)

where r, 8, and ¢ are now relative to a coordi-
nate system centered in R, and j{kr) are spher-
ical Bessel functions. We’ll refer to this expan-
sion as an interior or j-expansion. For the
moment, we will consider both of these to be
infinite sums. The FMM then rests on three
observations:

e The origin of the h-expansion (Equation 2)
can be shifted arbitrarily inside R,, and a
new set of coefficients, B, can be com-
puted for this new expansion. The same
holds for shifting a j-expansion (see Equa-
tion 3) arbitrarily to a new origin inside R,,
which results in 2 new set of coefficients,

&

* An h-expansion valid outside R, can bhe
translated and converted into a j-expansion
valid inside R;, resulting in a new set of co-
efficients for the j-expansion, Y-

o Most crucial, these translations c2:: be done
efficiently by transforming the coctficients

into a basis in which both transladon oper-
ators are diagonal. We'll illustrate this be-
low by constructing a diagonal form for the
h-expansion translaton operator. The
FMM, with one or multdple levels, is now
basically a sequence of combinations and
translations of multipole coefficients re-
sulting in an expansion for the field that can
be easily evaluated at any point inside an-
other group.

Generalized addition theorems for partal
wave expansions and their corresponding ex-
pressions for the ranslation of multipole coeffi-
cients have been known for many vears.’!°
Rokhlin, however, was the first to realize that
these ranslation operators could accelerate the
numerical computation of fields obeying the
Helmholtz equaton. A general expression ex-
ists for translating the coefficients of muldpole
expansions that are solutons to the Helmholzz
equation; the specific forms of interest here are

an = Z ﬂ,m,Z c(lmll ’m’lpq)lpq ) C))]
I'm' Pq

@ = D Cpwe 3 c(lmfl'm|pg)A,,  and  (5)
I'm' »

Yim= D, Brw O clbmll'm|pglu,, . ©)
m I

where c(im | 'm’| pg) is proportional to the well-
known 3j symbols involving products of three
spherical harmonics:

c(mfympg) = i"*8 [ kY (ko )
Yrut (kor ko [V (korky) - (D)

Following Rokhlin, we will refer to the func-
tions A,, and W,, as translation operators. They
have the forms

Ay = 475, (k212)V po(612,812) and @®)
Hpg = 472by (kx2)V 5 (612,012 ®)

In the above expressions, xy;, 8,,, and ¢,; refer
to the coordinates associated with the vector
pointing from the expansion’s original center to
the new center.

The problem with using the above expres-
sions directly in a computational scheme is that
an individual coefficient such as f,,, depends on
a sum over all the original coefficients B;,, and
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on a sum over a set of indices associated with the
transladon operator and 3j symbols. Even with
truncation of the multipole expansion to a finite
number of terms, L, this approach is not pract-
cal. A computationally viable scheme—that is,
one that scales no worse than O(LZ)—-requires
diagonalizing this transformation, meaning that
each coefficient can be translated independently
of all the others. The problem, then, is to find a
representation in which this translation is diag-
onal. This representation is often called the far-
field representation, and the transform that diag-
onalizes the two translation operators is the
far-field transform. .
Following Rokhlin, we define the far-field
transform and inverse transform of an arbitrary

function fas

f(ke,ka) = zilylm(keik¢)ﬁm and (10)

b
Fim = [ dbi™Y (ko by ) f (kg k) - A1)

This is basically just a spherical harmonic trans-
form that rotates a function from one basis to
another in exact analogy to 2 Fourier transform.
Consider the specific case of translating an h-
expansion to a new origin, which means trans-
forming the set of coefficients a,,,. By taking the
(inverse) far-field ransform of o and A in Equa-
tion 5, the far-field transform completely diago-
nalizes the transformation of the os—that is,

@, = j déi-frf,;,,(kg,/e¢)a(ke,k¢)a(k6,1e¢)
(12)

or, equivalently through a far-field transform of
Equation 12,

G{kg, ky) = Akg, ky )or(ko, ) 13)

Even more useful computationally is that the in-
verse transform A,, simplifies to

Ak, 2, )
= 2 'Yk, g 475712 )V (612,61,
Im

= gfkxz cosy , (14)

where 7 is the angle between (6y;, ¢;,) and (kg,
ky). Because A is also the translation operator for
j-expansions, the same analysis applies to the
translation of interior expansions.

The translation operator A represents a “lo-
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cal” shift in the group center, retaining the ex-
terior or interior expansion. The translaton of
an h-expansion into a j-expansion is through the
translation operator 1, which, in the far-field ba-
sis, has a similar form to 4,

wko, by} = > i(2 + 1) (kx;)P(cosy) (15)
7

but with considerably different mathemadcal
behavior. The translation operator y is qualita-
tively different than A in that no simpler expres-
sion exists. In fact, the infinite sum diverges, and
the mathematical consequences of this diver-
gence require careful attendon in a rigorous
treatment of the FMM. But, a numerical imple-
mentation that uses runcated multipole expan-
sions needs only a finite number of terms to
achieve a given accuracy in the translation.’
Hence, the divergence of the infinite sum has
no practical consequences.

So far, our description of multipole expan-
sions and translation operators has not covered
two significant issues. We haven’t discussed any
of the theorems that prove that the multipole
expansions themselves converge to a specified
accuracy in a number of terms approximately
proportional to the group radius. Also, we
haven't discussed truncation of the series for the
h-to-j translaton operator, . These issues are
important in numerical implementation because
the algorithm’s accuracy depends critically on
the number of terms kept in these series. How-
ever, Rokhlin has already adequately addressed
these issues.

The above expressions for translation opera-
tors, together with the far-field ransform, are
the basic tools used to construct a multilevel
FMM algorithm. Clearly, the field caused by a
collection of sources inside an arbitrary group
G can be evaluated at any point inside a second
group G, by converting the exterior h-expan-
sion, valid outside G), to an interior j-expansion
valid inside G,. We can translate the coefficients
of the j-expansion to any point inside G,. Also,
we can calculate the field at that point caused by
the sources in G by computing &y, the leading
term in the j-expansion. No other terms con-
tribute, because the expansion is already cen-
tered at the field point where 7 = 0 and all the
terms j;,(0) are zero except /o, which is one.
Thus, we can evaluate the field directly through
the far-field transform as

9(0) = g = ﬁjdéd(ke,k‘,) . ”

41




42

Interpolation and filtering

One crucial issue remains in constructing an
efficient multilevel algorithm that scales prop-
erly. The muldlevel Helmholtz FMM works
fundamentally the same as the Laplace FMM in
that it combines expansions valid inside the orig-
inal groups to form expansions valid inside cor-
respondingly larger groups with a bigger group
radius. This recursive regrouping results in a
tree-like structure that has groups of different
sizes at different levels of the tree. h- or j-
expansions valid for groups at one level must be
combined to form expansions valid for either
larger or smaller groups at a different level.
More specifically, h-expansions from neighbor-
ing groups are translated and combined into a
single h-expansion representing a larger group
when going up the tree, and j-expansions in a
large group are translated to smaller groups go-
ing down the tree. Let’s look at these two oper-
ations in more detail.

When combining smaller groups into a larger
group, the number of coefficients in the h-
expansions representing each of the smaller
groups must increase to preserve the zccuracy of
the source expansion after the coeffic:ents are
translated and combined at the new (larger)
group center. This is a consequence of translat-
ing the h-expansions to origins that are further
away than what was allowed by the number of
terms in the original expansions. In terms of
muldpole coefficients, this operation is handled
by adding higher-order coefficients, inidally
zero, and then translating the expansion. The
translation mixes the multipole coefficients so
that the higher modes are nonzero after the
translation. This new expansion can be com-
bined with others being shifted to the same
group center by simply adding their coefficients
term by term. The problem with implementing
this procedure is that the translation operzzor
must be applied in the diagonal far-field repre-
sentation, not the multipole coefficient repre-
sentaton, for the reasons we described in the
previous section. In the far-field basis, the addi-
tion of higher-order multipole terms that are
Zero amounts to an interpolation of the functon

- P(ke, k) onto a denser set of far-field directions

(ko', k). This interpolation must not introduce
spurious high-order multipole terms; otherwise,
the algorithm’s accuracy is quickly compromised.

A similar problem exists when translating the
j-expansions of larger groups to the centers of
smaller groups, a procedure that is required
when going down the tree. Because a smaller

number of multipole terms are needed to rep-
resent the field inside a smaller group, the num-
ber of terms in the multipole expansion can be
decreased with no loss of accuracy. In the far-
field representation, this procedure amounts to
filtering the function a(ke, 4s) to a less dense set
of far-field directions (kg, k). But, just as in the
interpolation step described above, the filtering
operation must remove only the higher-order
multipole coefficients; otherwise, the accuracy
is similarly compromised.

The implementation of fast, efficient interpo-
lation or filtering operations is straightforward
in principle. Because the translaton operators
are diagonal in the far-field basis, all FMM im-
plementations keep the h- and j-expansions ex-
clusively in the far-field representation. The in-
terpolation and filtering steps, however, are
rigorously defined only in a multipole coeffi-
cient basis.

Consider interpolating an h-expansion given
by a set of coefficients in the far-field represen-
tadon B(6, ¢). The multipole coefficients are
given by this far-field wransform:

B, = J d(cos kg P, (cos kg )J' diee™™ ﬁ(ke, ko)

= J‘d(cos kg )P (cos kg )B(ke)- an
We have left out phase and normalization fac-
tors in Equation 17. Because filtering or inter-
polation always involves a transform-inverse
pair, we consider these factors as being absorbed
into the definidon of the muldpole coefficients.
Assuming a uniform distribution of points in the
k4 direction on the unit sphere, a fast Fourier
transform (FFT) can easily and efficiently com-
pute Bm(ke)'

Numerical quadrature handles the remaining
part of the wansform:

N
Bin = waP(cosks Bks),  (18)
n=]
where w, and kg, are sets of weights and abscis-
sas for an appropriately defined quadrature rule.
Interpolation onto the denser set of points is
then handled by the inverse transform

o & . kg &
ﬁ’(ka k, ): 2™ Y Bl (cosks) (10

mu-l’ =0

where L’ > L, the far-field directions (k’, ky) are
now a correspondingly denser set of points on
the unit sphere, and all the B, corresponding to
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/> L are zero. The filtering step happens in ex-
actly the same way, except that L’ < L and the
coefficients corresponding to /> L’ are simply
truncated. In both cases, an FFT can handle the
sum on 7 straightforwardly.

The filtering and interpolating steps will
quickly create a serious computational bortle-
neck and break the scaling of the entire algo-
rithm if not treated properly. Indeed, the pri-
mary obstacle to constructing a practical
multilevel FMM has been proper handling of
these steps.

For this problem, the best solution—desirable
because it is exact—is to construct a fast associ-
ated Legendre transform.!"*2 When combined
with an FFT of the ¢ directions on the unit
sphere, this approach results in an operation
count that scales no worse than O(L log L),
where L is the order of the spherical harmonic
expansion at a given level. This method works
in principle but suffers from a large crossover
point compared to the “semifast” transform,
which also uses the FFT in the #, direction but
uses a slow transform in the %, direction, and
which scales as L*. Unfortunately, this crossover
point is squarely in the region encountered by
problems of large but practical size. Recent work
has improved this crossover point somewhat,!2
and we are using the improved algorithm for
higher levels of the multilevel FMM, which

we’ll describe next.

Implementation

Our multilevel FMM implementation consists
of two main routines: setup and apply.
Setup produces a tree or hierarchy of groups
that partition the sources. It uses this tree to pre-
compute the translation operators and other
quantides. Using information computed by
setup, apply forms Z - ], the value of the field
at every source caused by all other sources.

Setup

To construct the tree, setup performs the
grouping on a cubic lattice where each box edge
has the length D/ V3 (see Figure 1). The group
diameter D is picked to minimize the overall op-
eration count and typically ranges from 0.5 to
1.5 wavelengths. At the lowest level (level 0), the
routine assigns each elementary source to the
box with the closest center. With this base
grouping, the grouping process moves on to
subsequent levels. At each level /, the size of the
boxes doubles, so each box contains up to eight
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Figure 1. Multilevel FMM grouping. The small box A interacts with
the dark shaded region, using the level-0 translation operators. At
the next higher level, the medium box B interacts with the medium
shaded region, and so on for the large box C. In general, for a low-

accuracy solution (L, ~ ko D), a box interacts with 27 other boxes

(in 3D) through translation operators. The eight small boxes cios-

est to A are handled directly.

active subboxes. However, because a surface is
generally being discretized, the number of ac-
tive subboxes is usually closer to four. This
grouping process contnues untl all the sources
fitin one box. The quantity H is set to the num-
ber of levels or height of the tree, and the top-
most level is H - 1. The set of groups at a given
level is denoted groups(J).

The translation operators at each level will
have the same number of terms L, and far-field
directions K] because the box sizes are the same.
The number of terms at each level is given by
an empirical fit,}

d
L[ = kODI +Rlog(/e0D, +ﬁ) , (20)

- where 4 is the desired number of digits and & is

the wave number (and should not be confused
with the far-field direcdons). If necessary,
setup increases the number of terms at a level
untl that number is a product of small primes.
This makes the discrete Fourier transforms in
the interpolation and filter steps fast.

For each group, setup constructs two lists:
nearby and far. For the top group, the nearby list
contains itself and the far list is empty. The rou-
tine then starts at level /= H - 2 and works down
to /= 0. For each group € groups()), it considers

43




i
A ’ ‘
| : L4

- » >‘

v
v Lo

i s
Interpolate ——e- - !

Filter <a—— _§p_rf_t__
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all groups 7’ that are subgroups of grov in the
near list of the parent group of m. If - is far
from m—that is, kg X, 2 L,—setug  :cesmt’
on far(m); otherwise, it places m’ . .nm).
XKoo = X,y = X,y where X, is th2" _ater of
group 7 and X, is the center of griup .
Once setup has constructed the 1:»ar and far
lists for every group in the tree, it trwn::tes the
tree (H is reduced) so that the topmo:it . :vel has
a reasonable number of far interactior:: :0 com-
pute (in the full tree, groups in the top:-iost lev-
els are near each other). Given the (tr-::cated)
tree with the near and far lists, setup v.n pre-
compute all the translation operators and other
needed quandties, and the routine is complete.

Apply

To form Z - I—that is, to apply the multilevel
FMM operator to the source vector—apply
follows this procedure:

1. Localto far: It computes a representation of
the field external to a group caused by the
sources in the group. For 7 € groups(0),

Smk = Eae:mn(m) g'k"(x"-")l‘ s

where 4 is a source in group , x, is its lo-
cadon, I, is its swength, and k= k(,l; is a far-
field direcdon (kg k4). This shifts each
source to its group’s center, where its field
is accurnulated with that of all other sources
in the group.

2. Level-0 transiation: For m € groups(0), it
COMPULES i = L' ¢ farim) L 'Sl WheTE
T o't = [k, ky) is a level-0 translation op-
elrator rs given in Equation 15, with x; =

xm'm .

3. Uptree and translation: Working from level /

=1to/=H- 1, apply first computes the

6.

field at the center of each level / group
caused by its subgroups, and then translates
this field to faraway groups and accumulates
the fields from subgroups. Specifically, for
each subgroup =’ of 7, it computes s, =
interpolate(sps) and then shifts:

Sk = Spu + e'k'(x"'x"")s;,,'k_

The interpolate step takes the external rep-
resentation of the »’ group (s,,+) and con-
verts it into a representation s',,; valid for
its parent group 1, as we discussed in the
previous section (see Equation 19). Apply
then shifts the field 5, to the center of
group 7 and sums that field with the con-
tributions from the other subgroups.
thereby forming an external representation
of the field caused by all the sources in 7.
Figure 2 depicts this interpoladon and shift-
ing. The quandties s,,; correspond to the
far-field representation of the f5s in the pre-
vious section. Once apply has performed
all the interpolation and shift steps at the
level, it translates the fields, gmi = Zow' ¢ fortm
Topom'te St for m € groups(J), using transladon
operators for level /. The quanddes g,,, are
the far-field representation of the as.
Downtree: Working from level /= H~1to/
= 1, apply shifts the field from each group
at level / to its subgroups and converts it to
the subgroup representadon. Specifically,
for 7 € groups(l) and 7" a subgroup of m, it
shifts
Emi = e.k(x,..—x,.)gm&

and then filters: g, = filter(g’,.) (see Fig-
ure 2).

Far to Jocal: Each lowest-level group now
has the field caused by all far-away groups.
Apply computes the effect on each point
in each group:

8= 3 w0

for m € groups(0) and 4 € sources(m), where
w, is the quadrature weight for the sphere
rule. This corresponds to the integral over
the far-field directions in Equation 16. The
routine forms the quadrature weights from
the product of a Gauss Legendre quadra-
ture rule (with Lg abscissas) in the (polar)
angle and a trapezoidal rule (with 2L, ab-
scissas) in the ¢ (azimuthal) angle.

Direct: Apply directly computes the lowest-
level interactions that are too close for
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FMM:B,=B,+%,. soureestmy (X X) I fOr
m € groups(0) and 7’ € near(m).

The result is B with the accuracy specified by
the transladon operators.

Time complexity

Consider a uniform discretization of a simple
convex shape, such as a sphere, having N points.
The number of groups at the lowest level is M,
o< N/Dy?. Let Dy be one so that the groups are
roughly the size of a wavelength; then M, = O(N).
For a low-accuracy solution, the number of terms
atlevel /is L~ koD = ko 2. The branching factor
of the FMM tree for a surface is four, so the num-
ber of groups at a level is M, = 4 M,. The toual
number of levels, H, is then given by M, = 4#-1,
assuming a full oree. For H>2, we have H=1 +
logs Mp and thus H = O(log N).

So, the dmes for the steps in apply are as
follows:

® Local to far: Ty=N2 L?=2k’!N= o)
because the number of far-field directions
atalevelis K;= 2 L?. The time for far to lo-
cal is the same.

* Translation: a group interacts with 27 far-
away groups (see Figure 1), which gives

H-1
T, = Y 27M,2L} = 54 MRL2H = O(NlogN).
1=0 1)

* Downtree: To filter a single group from level
/to/~ 1 requires L; FFTs oflength 2L, L, ,
FFTs of length 2L, and 2L,, 1D FMMs
of length L,. Recalling that each parent
group must filter down to four subgroups,
summing over all the levels gives

H-1
Td = z 4MI("LIZLI log ZLI + cp ZLI—ILI log LI +
=]

¢,Li2L, log2L, ) (22)

= SMOIeOZL(’,’i](c, (7 +log 2k, L) +
=1

(cl,/Z + c,/4)(1 + logkol.o))
' @3)
T,= o(N log? N), 24)
where ¢, and ¢, are the proportionality con-
stants for the FFT and 1D FMM. The ef-
fort in shifting is negligible. Uptree has the

same order of complexity.
* Direct: Each lowest-level group has eight
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nearby groups where interactions must be
handled directly (see Figure 1). So, each
source has a fixed amount of work in the di-
rect interaction that does not grow with
problem size, giving a complexity of O(N).

Therefore, the overall scaling for the mult-
level FMM is O(Nlog” N). For higher-accuracy
solutions, L increases, but L; < 2/ Ly for /> 0, so
the O(N log? N) scaling is an upper bound for
any reasonable accuracy.

Memory

The memory required scales as O(N log N).
A variety of techniques can lower the prefactor.
First, because of the grouping, at a given level
only a few discrete distances and orientations re-
quire translation operators. It pays to keep a
cache of translation operators indexed by level,
group separation (X,,,,,/), and the cosines that the
group separator makes with two far-field direc-
tions, (X, - k) and (X - %,). Before setup
computes a translation operator, it searches the
cache to see if the operator has been previously
computed. This results in a substantal com-
pression of the operator, as we’ll show in the
next section.

Each level has only eight distinct sets of shift
coefficients, which can be precomputed and
stored. However, the lowest level, where individ-

ual sources are shifted to group centers and back -

(Steps 1 and 5), has as many coefficients as there
are sources times the number of far-field direc-
tons. Precomputing these coefficients is unnec-
essary because they are simple exponendals. In-
stead, the coefficients can be computed as needed,
once per apply. The cost of doing this can be
amortized over several simultaneous operator ap-
plications. This corresponds to solving for multi-
ple right-hand sides using a blocked iterative
solver, which is a common practice. Similarly, the
kernel evaluations for the direct interactions (Step
6) can be computed as needed to save memory.

Resuits

We implemented apply in C++ and ran it on
an IBM RS6000/590 workstation. We used the
highly optimized FFTW package for discrete
Fourier transforms*? and 1D FFM routines for
filtering.!"!2 Table 1 shows the apply time per
right-hand side and the memory requirements
for spheres of increasing sizes and selected ac-
curacies discretized by picking points randomly
on the surface. Figure 3 plots the times with
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Table 1. Runtime and memory requirements for apply, for various problem sizes and accuracies.

Time (seconds)

. for different accuracies Memory use(bytes)

Points Area 22 2 3 4 for two-digit accuracy
314 1.26x10¢2  8.30x107 1.29 x 10° 1.53x10° 1.4 x10¢
2,827 1.13x103  2.17x10° 3.17x10° 4.51x10° 1.7x107
7,853 3.14x10°  8.49x10° 1.21x 10’ 1.59x 10 49x107
15,393 6.16x10°  2.11x10' 2.88 x 10! 3.74x 10’ 1.0x 108
31,415 1.26x10*  4.58x10 6.24 x10' 8.07 x 10" 2.1x108
70,685 2.83x10*  1.28x10? 1.69 x 102 2.11 x 10? 4.9x 108
125,663 5.03x10*  240x10? 3.19x 102 3.93x10? 8.6 x10°
196,349 7.85x10*  3.92x10% — - 1.4x10°

least-squares fits to the time complexity. For the
two-digits case, the fitis

TIN) =136 x10° Nlog’ N. 5)

The point at which apply starts to perform
faster than a dense-operator application is ap-
proximately 25,000 unknowns. This sssumes a
sustained floadng-point rate of 100 M+lops per
second and no penalty for using the out-of-core
techniques required to handle extremely large
matrices. Table 2 shows the times for each algo-
rithm step for the 31,415-unknowns problem.

We measured the effect of the wansladon op-
erator cache, for the 196,349-unknowns prob-
lem at two-digit accuracy. On average, each
level-0 translation operator is used 3,512 times;
each level-1 operator is used 1,056 times; each
level-2 operator is used 290 times; each level-3
operator is used 77 times; and each level-4 op-
erator is used 14 tmes. The lowest levels use
each operator many times because group pairs
have many opportunities to be in the same rela-
tive orientation and distance. Higher levels have
fewer groups and hence less potental for reuse.

Overall, the muldlevel FMM memory te-
quirements are dramatcally less than that re-
quired by a dense matrix. For the 196,349-
unknowns problem at two-digits accuracy, the
FMM requires approximately 1.4 Gbytes, com-
pared with the 616 Gbytes for a dense matrix
(assuming double precision). This represents a
savings of more than a factor of 400.

he algorithm we’ve described can be
used to compute acoustic scattering
with Dirichlet boundary conditons
using a point-based, or Nystrém, dis-

cretization.'* The only additions required are that
the far-to-local step must incorporate the Ny-
strém quadrature weights and that the kernel val-
ues in the direct computadon must be corrected
by an appropriate scheme to accurately treat the
kernel’s singular nature. Many other important
issues exist, such as the choice of integral-
equation formulation, appropriate discretizations.
and the iteradve solver and preconditioner. But
these are all independent of the FMM.

An extension to electromagnertic scattering or
using a patch-based (Galerkin) discretizaton can
be copied right from the single-level scheme’
because the multilevel transladon-operator ma-
chinery is independent of boundary conditions
and discredzations. ¢
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The authors describe a diagonal form for translating far-field expansions to use in
low-frequency fast multipole methods. Their approach combines evanescent and
propagating plane waves to reduce the computational cost of FMM implementation.

¢

any problems in acoustics, microwave fil-
ter design, interconnect modeling, and

nated by the expense of translating far-field partial wave
expansions to local ones, requiring 189p* or 189p° oper-

electromagnetic scattering require the

solution of the Helmholtz equation (see
Figure 1). To simplify the ensuing discussion, we limit
our attention to the discrete N-body problem (see Fig-
ure 1, Equation 4). The numerical difficulty here is
clear; direct calculation of the sums in Equation 4 at
each point requires O(N?) work, rendering large-scale
calculations impractical. To overcome this obstacle, fast
multipole methods have been developed over the last
decade that reduce the operation count to O(N) for o
=~ I (low-frequency scattering) and O(N log N) for @ ~
\/N(high—frequency scattering).!~ Sdill, in the 3D case,
the constant implicit in the O(N) notation is quite large,
especially for high precision in the low-frequency
regime.

We present the analytic foundations for a new version
of the fast multipole method for the scalar Helmholtz
equation in the low-frequency regime. The computa-
tional cost of existing FMM implementations, is domi-

32 1070-9924/98/$10.00 © 1998 IEEE

ations per box, where harmonics up to order p” have been
retained. By developing a new expansion in plane waves,
we can diagonalize these translation operators. The new
low-frequency FMM (LF -FMM) requires 40p7 + 6p* op-
erations per box.

For this new LF-FMM, we generalize a version of the
FMM recently developed!®!! for the Laplace equation
(@ = 0), which replaces the classical multipole expansion
with a representation in terms of evanescent plane waves
to diagonalize certain translaton operators. It bears some
resemblance to the FMM for the Helmholtz equation
Vladimir Rokhlin developed, '~ which uses an expansion
in terms of propagating plane waves to diagonalize trans-
lation operators. The latter method, which we will refer
to as the high-frequency FMM (HF-FMM), is numeri-
cally unstable at subwavelength spatial scales. The LF-
FMM we present uses a combination of evanescent and
propagating modes and blends the FMM and HF -FMM
together seamlessly. -

-
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. where Q is an exterior domain and 3Q is its

. boundary. in applying integral-equation methods

i to Equations 1 and 2, we must repeatedly evalu-
ate sums of the form

If _ i
o]

N
D(x, )= qu k=1,..N,

=y
ik J

)

where the points x, are in R3, because ¢™/r is the
- free space Green’s function for the Helmholtz
* equation satisfying the Sommerfeld radiation
. condition (Equation 3).

Figure 1. Solving the Helmholtz equation.

The multipole expansion

We now briefly define the multipole (or pardal-
wave) expansion due to a collection of point
sources and describe some of its properties. -1+
We will need a variety of special functions,
whose definitions we collect here.

Definition 1

P,(x) denotes the Legendre polvnomial of de-
gree n, and P}"(x) denotes the associated Le-
gendre function of degree » and order 7. Using
the Rodrigues formula,

”

P (x)=(-1)"(1 - .x~3)M’3£7P,,(3-) .

The spherical harmonic of degree 7 and order
71 is denoted by '

“'271 +1(n "|7”|)-'

|mi imo
VT G CSOEO)

Y."(6,)=

We define the spherical Bessel and Hankel func-
tons 7,(r), b, () in terms of the usual Bessel
and Hankel functions via
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R YS
rr)= \’77.7"4/3(")

2 K3 i)
By = \ T;H;l;'l,:(r)

Because we will always be working with Hankel
funcdons of the first kind, we will use b (r) as an
abbreviation of £,'V(7). In particular.

boler)= S
o(ex) i

Theorem 1: multipole expansion

Suppose that 7 sources of strengths {g.7=1.
-, J} are located at the points x = (p, a.B).;
=1, .., 7}, with | p;| <. Then for anvx=(r, 6, 0)
€ R* with 7> 4, the potential

I |
el&)‘!lx in

ox)-34,

2
is given by

O(x)= 47y 3 MTh (@) 7 (6,0), (6)

n=0 m=-n

where

7
MY =3 q,j,(0p)F;™(a,B,) 7
21/

Furthermore, for any p 2 aw,

D(x) - }f f;,wg’b,,<a»~)r;"(e.¢) = o(f)f . (8)

n=Um=-n

Note that for Theorem 1, wa is a measure of
the radius of the enclosing sphere in terms of
wavelengths. Thus, according to Equation 8, the
multipole expansion does not begin to converge
until the number of terms in the expansion p is
of the same order as the number of wavelengths
in the (smallest) enclosing sphere. Once enough
terms are present, the error decay is quite rapid.
Because we are interested in the low-frequency
regime, we will assume that the first condition
is always satisfied. If we now suppose that = 24
in the context of Theorem 1, then Equation 8
implies that

o(x)- 3 iM:’b,,m»oY;"(e.m=o(§)ﬂ, ©)

n=Om=-n

and setting p = log,(1/¢) vields a precision ¢.
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Figure 2. The
+2z list for the
box B.

Table 1. The interaction list for a hox Bis subdivided into six lists,
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While an N log N algorithm can be con-
structed for the N-body problem based on only
the preceding theorem, it performs poorly in
3D. The FMM relies on a more complex analy-
sis and uses several translation operators. Be-
cause the details of such a scheme have been
fully described many times,*5!%15 we will not
repeat them here. Instead, we will concentrate
on the one translation operator whose cost is
dominant in existing FMM implementations.

Theorem 2: multipole-to-local conversion

Suppose that 7 sources of strengths 915 25 -y
g7 are located inside a sphere of radius 2 with the
center at the origin. Suppose also that Q = (o, o,
P), and that p > (¢ + 1)z with ¢ > 1. Then the mul-
tipole expansion (Equation 6) converges inside
the sphere Dy, of radius 2 centered at Q. Inside
Dy, the potential due to the charges 91 42, -
g71s described by a local expansion:

o ]
Sx)=3 ¥ L}j(ar)Y 6,0
1=0k=—y , (10)

where (7', €, ¢') are the coordinates of x with
respect to the center Q. Furthermore, for any

B $

!
o(x)- 3 Zijz(wr)Y/‘(e,@} =o(d)»
1=0 k=~ ¢ ) (l l)

For Theorem 2, the matrix that converts the
multipole coefficients {M”} into the local coef-
ficients {L}) is rather complicated,*'¢ and we
omit it. We simply observe here that the matrix
is dense, so applying it to a truncated expansion
with O(p?) harmonics requires O(p*) work.

Although, as indicated above, we will not de-
scribe the full 3D fast multipole algorithm, it is
based on a hierarchical subdivision of space. For
this, we assume that all sources are contained in
a box of side length D, which we refer to as
refinement level 0. We obtain refinement level /
+ 1 recursively from level / by subdividing each
box into eight equal parts. This yields a natural
tree structure, where the eight boxes at level / + 1
obtained by subdividing a box at level / are con-
sidered its children. Below we define boxes at the
same refinement level (Definitions 2 and 3) as
well as the interaction list associated with each
box (Definition 4).

one associated with each direction.

Interaction list

Elements

+2 list -
-2z list
+y list
—y list
+x list
~x list

Separated by at least one box in the +2 direction
Separated by at least one box in the -z direction

Separated by at least one box in the +y direction and not contained in the +z or -z lists
Separated by at least one box in the ~y direction and not contained in the +z or 7 lists
Separated by at least one box in the +x direction and not contained in the +2, -z, +Y, or -y lists
Separated by at least one box in the —x direction and not contained in the +z, -z, +y, or ~y lists
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* Definition 2. Two boxes are said to be near
neighbors if they are at the same refinement
level and share a boundary point (a box is a
near neighbor of itself).

¢ Definitions 3. Two boxes are said to be wel/
separated if they are at the same refinement
level and are not near neighbors.

* Definition 4. With each box  is associated
an interaction list, consisting of the children
of the near neighbors of /’s parent which
are well separated from box ;.

A simple counting argument shows that the
Interaction list contains up to 189 boxes. In the
FMM, the most expensive step is convertng the
multipole expansion for each box into the 189
different local expansions that the boxes in its
Interaction list require. If there are M boxes in
the hierarchy, then this requires 0(189p%11)
work.

Diagonal form of translation
operators

The new generation of FMM:s is based on com-
bining multipole expansions with exponential or
plane-wave expansions. A complicating feature
of this approach, however, is that we need six
different expansions for each box, one emanat-
ing from each face of the cube. The interaction
list for each box is subdivided into six lists, one
associated with each direction. Figure 2 shows
the +z list for the box B, and Table 1 explains the
six lists for the interaction list. After reviewing
Table 1, it is easy to verify that the original in-
teraction list is equal to the union of the +3, -3,
+Y, =¥, +x, and -x lists.

The starting point for our analysis is the in-
tegral representationrepresentation

dadl

» (12)

'\’}f-w:_

which is valid for z > 0. It is straightforward to
derive from the 3D Fourier transform of the
kernel ¢'“”/r, followed by contour integration.
We need the restriction z > 0 for the contour in-
tegral to be well-defined.'* The 2D formula is
given in the “2D Fourier transform” sidebar.
Note that, for 0 < A < w, the modes propagate
without attenuation, while for w< 1 < e, they
decay. We refer to the first region as the propa-
gating part of the spectrum and the second as

JULY-SEPTEMBER 1998
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Figure 3. For the propagating part of the spectrum, we change
variables A=w sin 6 (Equation 13).
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Figure 4. For the evanescent part of the spectrum, we change vari-
ables 0® = 22 - «? (Equation 14).

the evanescent part. For the propagating part, we
change variables A = wsin @ (see Figure 3 for the
resulting equation). For the evanescent part, we
change variables 6° = A’ — & (see Figure 4 for
the resultng equation).

In Equation 12, as @ — 0, the propagating part
disappears, leaving only the evanescent spectrum.
This is the integral representation for 1/7 used in

2D Fourier transform
In 2D, the analog of Equation 12 (see the main text) is
o ik = Bowly
Ho(wr)=lj &
T Net-x (23)

which is valid for y>0.

The propagating part, as above, covers the range || < w. Using
the change of variables A = wcos 8 yields

1 ~i@{xcosf-ysin
(Ho(w’)),,m,, = ;jo"e @(xcosd-ysind) 50 24

For the evanescent part, we make the change of variables o2 =

2?2~ &2, so that
e—ayeiv‘azﬂo:x
2 5
VO -

1
(HO ((Ur))rvanextml = ; J:: do

(25)
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the FMM—hence our assertion
that we have a seamless transition
to the zero frequency case.

The next problem we face is that
of discretization. The integrand
for the propagating part is smooth,
and we achieve high-order accu-
racy via Gaussian quadrature in the
6 direction and the trapezoidal rule
in the a direcdon. The evanescent
part is more complicated. The in-
ner integral, with respect to a. is
easily handled by the trapezoidal
rule (which achieves spectral accu-
racy for periodic functions), but
the outer integral requires more
care. We use generalized Gaussian
quadrature rules,'” designed with
the geometry of the interaction list
in mind. We present our analysis
in the “Discretization” sidebar.

Incorporation into LF-FMM

Consider now the interaction
list for a box B in the context of a
fast multipole code, for which we
need 189" operations with the
naive multipole-to-local transla-
tion operator, and 189 opera-
tions using rotation matrices.!?
Using the analysis outlined in the
“Discretization” sidebar, we can
generate six outgoing exponential
expansions at a cost of 6p° work
and translate them all at a cost of
189" work. Once a box has re-
ceived the incoming exponential
expansions from all directions, it
can convert them to a single local
expansion, using an addidonal 6p°
operations. Thus, the total work
scales like 12p" + 189p° operations
per box. Further symmetry con-
siderations reduce this to 6p® +
40p” operations.'°

ignificant implementaton
work remains, including

Discretization

Because of the restriction that z > 0, we assume, for the moment,
that a source Q = (xq, yp, 2o) is contained in a box 8 and that a target
P=(x,y, 2)liesinabox Ce + 2~ list(B). To fix spatial scales, we as-
sume that B and C have unit volume and that they are separated in
the z-direction by one or two unit distances. We then have the fol-
lowing result.’

Lemma 1: plane wave representation

Let rpg denote the distance from Qe BtoPe Ce + 7 — list(B), and
let {6;, ...,6x} and {v,, ..., v} be the nodes and weights for N-point
Gauss-Legendre quadrature on the interval [0,7/2]. Then there exist
weights u,, ..., 4, nodes g, ..., 6, and integers M(7), ..., M(s), so
that

1

,ei"'PQ L [ sin BL il uu[—cosekt:—:o n-smek[u-.xﬂ )cosa‘ﬂ_r-_\o)smaw
-0 ze B J
A

,’PQ = NS

Z v ~Opii=g i+t .cr:ww: X=X )COS Q. +iv=ygisina
-y = S TR pr=sorosa; ts-so10ma, | <e
a (15)

for 0< wrpq < 10, where a; = 27 j/M(k). The total number of expo-
nentials required, which we denote by Sexp satisfies

Sep =N+ Y M(k) = Oflog3e).

k=1

Norman Yarvin and Vladimir Rokhlin supply us with the weights
and nodes y; and o; for the evanescent modes.2 For six-digit
accuracy, the total number of modes we require is approximately
600—150 for the propagating spectrum and 450 for the evanescent
spectrum. Ten-digit accuracy requires 1,500 modes—300 for the
propagating spectrum and 1,200 for the evanescent spectrum. (The
FMM for the Laplace equation requires 280 modes at six-digit accu-
racy and 900 modes at 10-digit accuracy.)

Corollary 1

Let B be a box of unit volume centered at the origin containing L
sources of strengths {g, / = 1,...,L}, located at the points {Q} = (x, y,
z), 1=1,...,1}. Then for any P contained in +z — list(B), the potential
D(P) satisfies

ld)(P)_wi ﬁ“’P(k’j)e—iwCOSek:eilﬂSinBN cosalxe:wsmeksinai_r
k=121

s Mk — o
sy =07 INOF+0° COSQ;x iNOf+0 sina ¥
_Z ZWE(k,j)e kg VK e N "< Ag

k=1 j=t (l 6)

the coupling of this LF-FMM with an  across, but only those with smooth surfaces. A
HF-FMM, once the dimensions of a box hybrid code will be able to include subwave-
are on the order of a wavelength. Current HF- length mesh refinement and will greatly enhance
FMM implementations have been able to inves-  the range of future simulation efforts. ¢
tigate structures that are many wavelengths
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Corollary 2: Diagonal translation

Let B be a box of unit volume centered at the origin
containing N charges of strengths {g, /= 1, ..., L}, located at
the points {Q,=(x, y, 2), = 1, ..., L} and let C be a box in + z—
list(B) centered at (x,, y,, ). For P e C, let the potential ¢(FP)
be approximated by the exponential expansion centered at
the origin

¢(P) = wii WP(k,j)e—imecso,;eimsinek(oosalxﬂina}y)

k=

>

5
k=1 j

X J

(k) )
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(19)
Then
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where
VP(k-j) = WP(k_j)e'iwcosﬁk;,eiNSinOk cosal-x(em;sina‘ cosa,y, (2 1)
and
VE(k,j) _ WE(k'j)e_g‘;ei\v‘o,%w: cosa,x,ei\io,:\»wz sina, ¥, ' (22)

Equations 21 and 22 are, in some sense, the centerpiece of
the new scheme. They show that p? degrees of freedom de-
scribing the far field due to sources in a box B can be trans-
mitted to a box Cin its interaction list using p? operations. In
other words, in a plane-wave expansion, translation is equiva-
lent to multiplication (see Figure A).

l;dunipole Rep.

,’ plor p
pa! o
p?
/
Exp
Exponential Rep.

Exponential Rep.

Figure A. In the new FMM, we can replace a large
number of multipole-to-local translations—costing 0(p)
or O(p*) work—with a large number of exponential
translations, costing O(p?) work.

In an actual FMM impiementation, we will be given the
multipole expansion for a box B rather than the source distri-
bution itself, so we will need to convert it to an exponential
expansion. Moreover, after translating an exponential expan-
sion, we must convert it to a local harmonic expansion of the
form (se€ Equation 10 in the main text). The formulae are
rather complex, and we avoid going into detail.? Here, we
simply observe that O(p®) = O(log? &) work is required for
each step.

Up to this point, we have considered only the exponential
expansion needed for the +2 list. To obtain expansions appro-
priate for each of the other five lists, we simply rotate the co-
ordinate system so that the z axis points in the desired direc-
tion. The cost of rotation also scales as O(p?).
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A Scalable Multilevel Helmholtz FMM for the Origin 2000*

Mark A. Stalzer!

Abstract

Presented is a parallel algorithm based on the multilevel fast multipole method
(FMM) for the Helmholtz equation. This variant of the FMM is useful for electro-
magnetic scattering calculations. The algorithm was implemented on an SGI Origin
2000 using a threaded approach without explicit message passing. To achieve good
scalability, steps in the FMM that intrinsically require inter-processor communications
(applying far field translation operators) were modified to improve cache performance
and minimize communications costs.

1 Introduction

This paper presents a scalable parallel version of the multilevel fast multipole method
(FMM) for the Helmholtz equation: (V? + k?)¥ = p. This variant of the FMM is useful
for computing scattering cross sections and antenna radiation patterns|2, 3, 5, 6]. This is
in contrast to the FMM for the Laplace equation, V2¥ = p, which is applicable to the N-
body problem. A substantial amount of work has been done on parallelizing the (multilevel)
Laplace FMM[4, 8, 10], and single-level Helmholtz FMM]7, 9]. The emphasis here is on a
scalable parallel multilevel Helmholtz FMM.

This paper is organized as follows. In the next section, the basics of the multilevel
Helmholtz FMM are reviewed. In Section 3, the computation model is presented followed
by the details of the parallel FMM implementation in Section 4. Scalability results are
given in Section 5 followed by some concluding remarks.

2 Fast Multipole Method

A method of frequent choice for computing scattering cross sections and radiation patterns is
to solve a matrix equation, Z-I =V, derived from the discretization of an integral equation.
The number of unknowns N required for accurate modeling of such problems can be very
large, which severely limits problem size. The system can be solved by factoring the dense
matrix Z (an O(N3) operation), or by using an iterative technique which requires O(N?)
operations per iteration. The O(N?) operation in iterative solvers is the multiplication of
an approximation I by the impedance matrix Z. In contrast, the FMM works by recursively
decomposing Z into sparse components that can be applied in O(N log? N ) time.

The basic approach given here follows the paper by Gyure and Stalzer[5]. Consider
two well-separated spheres of radius R; and Ry, each containing a collection of Helmholtz
sources. The field due to an individual source is given by

eikor

= kor

(1) ¢(r) = G(r)

"This work was supported by DARPA under contract MDA972-95-C-0021 and the Hughes Electronics
Corporation. -
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where r is relative to the source and ky is the free space wavenumber. (Given a vector r. r
is its magnitude and 7 is the corresponding unit vector.) We want to quickly evaluate the

field generated by all the sources in R) at every source in R,. This field can be written as
a multipole expansion valid outside of Ry as

(2) U(r) = > Bumhy(kr)Yim(6. 0)
Im

where 7,6, and ¢ are relative to a coordinate system centered in R;.h;(kr) are spherical
Hankel functions of the first kind. and Y}, (6, ¢) are normalized spherical harmonics. We'll
refer to this expansion as an h-expansion. Similarly, we can write an expression for the
field valid inside R, :
(3) @(r) =Y amii(kr)Yim(6. ¢)

{m

where the coordinate system is now centered in R, and j;(kr) are spherical Bessel functions.
We'll refer to this expansion as a j-expansion. For the moment. we consider both of these
to be infinite sums. The FMM then rests on three observations:

e The origin of an h-expansion can be shifted arbitrarily inside Ry, and a new set of
coefficients, Blm’ can be computed for this new expansion. The same holds for shifting
a j-expansion arbitrarily to a new origin inside of Ry, which results in a new set of
coefficients, Gip,.

* An h-expansion valid outside of R) can be translated and converted into a j-expansion
valid inside Ry, resulting in a new set of coefficients for the Jj-expansion, “,.

¢ Most crucial, these shifts and translations can be done efficiently by transforming the
coefficients into a basis in which both operators are diagonal.

The far field transform of an arbitrary function f (fc) is

(4) Fk) = 3" 'Y (k) fim

Im

and the inverse transform is given by
5) fim = [ dhi™ ¥ (B) 1 ()

where k is a unit vector represented by polar and azimuthal angular components: (kq, kg).
It is in this k-basis that the shift and translation operators are diagonal. An h-expansion
in its far-field basis is shifted from a point x to another point x’ both inside of R; by

(6) B(k) = Mk, x" - x)B(k)
where A is given by )
7 A, = x) = ok (<)
The same shift operator A also applies to j-expansions. It represents a “local” shift in the
group center, retaining the exterior or interior expansion.

The translation of an h-expansion into a j-expansion is through the translation operator
, which, in the far-field basis is

(8) ulk, %'~ x) = 37 i (20 + Dhulkolx’ — x|) Pk - (x' ~ x)/|x - x])
l




where the P, are Legendre polynomials.

In practice the expansions are truncated to a finite number of terms L depending on the
group size and desired accuracy. The mathematical validity of this truncation is addressed
by Rokhlin[6] but it is related to the fact that these series are asymptotic and are, therefore.
of controllable accuracy. Empirically, it has been determined that the number of terms L
needed in the expansions for a region of diameter D is[2]

d
(9) L="FkD+ 16 log(koD + )

where d is the desired number of digits.

The above expressions for the translation operators, together with the far field
transform, are the basic tools used to construct a multilevel FMM algorithm. Clearly
the field caused by a collection of sources inside an arbitrary group G; can be evaluated at
any point inside a second group Gy by converting the exterior h-expansion, valid outside
G1, to an interior j-expansion which is valid inside G,. Also, we can calculate the field
at that point caused by the sources in G by computing &g, the leading term in the j-
expansion. No other terms contribute, because the expansion is already centered at the
field point where 7 = 0 and all the terms 5;(0) are zero except for jo which is one. Thus,
we can evaluate the field directly through the far-field transform as

(10) $(0) = Gop = % [ dhaich)

The abcissae k = (kg, ks) of the numerical quadrature rule used to compute this integral
are selected so that it can be performed exactly. One choice is to use a trapezoidal rule of
2L points in the ¢ direction and an L point Gauss-Legendre rule in the 6 direction. This
discretization of the k basis is used throughout the FMM.

The multilevel Helmholtz FMM works in fundamentally the same way as the Laplace
FMM in that it combines expansions valid inside the original groups to form expansions
valid inside correspondingly larger groups with bigger group diameters. This recursive
regrouping results in a tree-like structure that has groups of different sizes at different
levels of the tree. The h-expansions from neighboring groups are shifted and combined into
a single h-expansion representing a larger group when going up the tree, and j-expansions
in a large group are converted to smaller groups going down the tree. The details of this
process are given in the next section.

There is, however, an important mathematical detail. When going up the tree, it is
necessary to interpolate the far field representation of a group at one level onto the denser
(A more closely spaced) basis of the group one level higher. Similarly, when going down the
tree, it is necessary to convert to a sparser basis in a filtering process. In both cases, the
code converts from the far field basis to the multipole coefficients and then back to the new
far field basis using the definitions given in Equations 4 and 5. The actual implementation
is in terms of fast Fourier transforms for the kg4 direction, and fast associated Legendre
transforms for the kg direction[11]. As a practical matter, a slow associated Legendre
transform which is implemented in terms of matrix multiplication can be used on rather
large problems because of the small prefactor in its time complexity relative to the fast
transform. However, fetching the transform matrices from memory causes some scalability
problems which are addressed in Section 4.2. The details of the filtering and interpolation
processes are given in [5].




3 Computation Model

The parallel FMM is implemented using threads assuming a cache-coherent distributed
shared memory mechanism such as that on the Origin 2000. The 02000 is constructed as
a collection of nodes interconnected by a hypercube. A node consists of two processors.
each with two levels of cache, and a local memory that is shared by the processors directly
and by all other nodes via the network. To achieve good scalability, it is essential that the
caches be used effectively and that crucial data structures are placed in memories close to
the processors that will use the structures. This placement is treated in Section 4.2

The implementation rests on two abstractions: a Barrier and a Counter. These
abstractions are implemented in terms of IRIX threads (SPROCS) for the 02000 or POSIX
threads for other platforms. A Barrier B has the expected semantics: when a thread calls
enter(B), it returns only after all other threads have called enter.

A Counter is a thread-safe counter that has two primary routines: reset(C) and
nezt(C, p) (increment), where C is a Counter and p is a thread number. Counter is used to
loop over groups at each level in the FMM. The reset routine sets the counter to zero and
acts as a barrier. The next method returns the next value of the counter. The basic usage
is that all the threads initialize the counter to zero with reset and then enter a loop getting
the next value of the counter until all the groups at a given level have been processed.

There is one additional detail. At a given level in the FMM grouping there are a certain
number of groups M;. Assuming P threads, next for a thread p first returns values in the
range M;p/P ... Mi(p+1)/P—1. These are the thread’s groups for the level. Once a thread
is done processing its groups, nezt begins to return values corresponding to groups the have
not yet been processed by the other threads. When all work is complete, next returns a
value > M; and the computation moves on to the next step. The net effect is a sort of
dynamic load balancing. This is easy with shared memory, but difficult to achieve with
explicit message passing. Two final Counter routines are first(C,p) which returns M;p/P
and last(C, p) which gives AMj(p+1)/P — 1.

4 Parallel FMM

A basic parallel FMM is presented next that is implemented in terms of the primitives
defined above. The basic algorithm is then modified to improve scalability by explicitly
placing data structures in memory and by ordering the use of the translation operators.

4.1 Basic Algorithm
There are two routines: setup which builds the data structures necessary for the FMM, and
apply which computes the product Z - I.

The setup routine works as follows. First, a tree of groups is constructed. The lowest
level (I = 0) groups contain elementary sources. Each higher level group at some level L
contains up to eight level [ — 1 subgroups of one half the size. However, since a surface
is being discretized, the typical number of subgroups is about four. The top of the tree
consists of a single group which contains the entire scatterer. The quantity H is the height
of the tree in levels, so that the topmost level is H — 1. Let groups(l) be the set of groups
at level [, and M be the number of elements in this set. Denote the parent of a group m
by my. Finally, let L, be the number of terms in the expansion at level [ as determined by
Equation 9.

For each group m two sets (lists) are constructed, nearby(m) and far(m), based on



the following conditions:

(11) _ m' € nearby(m) iff koXpmm < Ly,
(12) m' € far(m) iff m' ¢ nearby(m) and koXmpmy < Lt

where m and m' are members of groups(l), and X, is the vector between the group
centers X and X'. In other words, a group is in the nearby list of m if it is too close to use
the translation operators at that level. Otherwise, it is in the far list as long as the parents
of m and m’ are too close to use their translation operators. Interactions between sources
are accounted for at the highest possible level. ‘

The construction of the tree is fast and is done by the main thread. The main thread
then creates P apply threads where P is typically set to the number of processors available.
These threads perform memory allocation and construct the translation operators y as
described in Section 4.2. Once the apply threads have finished initializing, the setup is
complete, and the threads wait on a Barrier.

When the iterative solver needs to compute B = Z - I (i.e. apply the operator), it
releases the threads from the Barrier and they execute the steps listed below. The steps
are written in terms of top level loops over groups using Counters. This naturally splits
the work over threads and, hence, processors. This approach scales properly given good
placement of data structures and care in applying translation operators. These issues are
treated in more detail in the next sections. In what follows, the (k) quantities are denoted
by s and the a(fc) quantities are denoted by g. Loops are written in a C-style as for
(initialization; test; update), or as for (i € set) where i is understood to sequentially take
on all values of the set or range. Each thread p executes the following to carry out the
FMM apply:

Local-to-Far: The far field basis of each | = 0 group is constructed from its sources. There
is no need to compute the multipole coeficients since it is a simple matter to compute
the far-field directly from the sources.

for (reset(Co);m < Mo;m = next(Co, p))
for (k€0...Ky~1)

Smk = Zaésources(m) )‘(k’ Xm - xﬂ)[ma

Note that at every level in the tree, there is a Counter C; controlling the iterations
at that level. The number of far field directions at a level is K; = 2L? using the
quadrature rule described Section 2. It should be clear that each value of an index
k represents some k = (kg,kg) in the discretized far field basis for that level. The
sources of a [ = 0 group m are sources(m), and the location of a source a is x,.

Uptree: The far fields due to each subgroup of a group are interpolated and shifted to the
group’s center and accumulated to form the far field basis of the parent group.

for (lel...H-1)
for (reset(Cy);m < M;;m = next(Cy, p))
for (m' € subgroups(m))
Sm: = interpolate(s,)
for (k€0...K;-1)
Smk = Smk + )‘(];» Xm - Xm’)gm’k
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Translate: For each group m, the far field of each far away group is translated to m.
converted to a j-expansion, and accumulated. This gives the field due to all groups
far from m as a j-expansion valid inside of m.

for ({€0...H-1)
for (m € first(Cy,p)...last(C;.p))
for (m' € far(m))
for (k€ 0.K;-1)
Imk = Gmk + U(k~xm b Xm’)sm’k

Downtree: The j-expansions are walked down the tree in a way analogous to Uptree.
The code works downward from level H — 1, shifting the field g,, of group m to its
subgroups and then filtering (instead of interpolating). The parallel structure is just
like Uptree.

Far-to-Local: At the bottom of the tree, the j-expansions are used to evaluate the field at
each source due to all far away sources. The procedure is the same as the Local-to-Far
step except that k — —k. At the end of this step, the result (B) has been computed
for all far away interactions.

Direct: To account for interactions between groups that are too close to each other to use
the FMM, the Green function is used directly:

for (reset(Cyp);m < My; m = next(Co,p))
for (m’ € near(m))
for (a € sources(m))
Bma = Bma + Za'esources(m’) G(Xa - x“/)‘[“’
enter(apply_gate)

G is the Helmholtz kernel as defined in Equation 1. The final step is for all of
the treads to enter a barrier. This ensures that the calculation is complete before
returning to the main thread.

This description of the parallel algorithm is very similar to its sequential counterpart.
The only complications are operations on the Counters, which look like regular loops,
and the Barriers. These similarities between the parallel and sequential algorithm make
implementation and maintainability easier.

This algorithm is for scalar (acoustic with Dirichlet boundary conditions) scattering.
For the vector case (electromagnetic), the work doubles because two field components must
be kept for each source but the algorithm is otherwise straightforward. The results in
Section 5 are for electromagnetic scattering.

4.2 Memory Allocation and Placement

To assist in placing data structures in memory, IRIX provides an interface called dplace.
During initialization, dplace is instructed to reserve P/2 local memories in a cube
architecture. When each thread p is created during the FMM setup phase, it instructs
dplace to associate itself with memory p/2. The default memory allocation policy in IRIX
is “first-touch,” meaning that when a thread allocates memory, IRIX attempts to satisfy
the request on the node containing the processor that is currently executing the thread.
The net effect, is that all memory allocated by an apply thread will be local assuming that
the allocations can fit in its node.
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In what follows, the phrase that a node allocates memory, indicates that one of the
threads running on the node (like the even numbered thread), allocates the memory and
then the other thread on the node aliases the allocation. This allows certain read-only data
structures to be replicated across nodes but shared by the threads running on the node.

After the memory model is set up using dplace, a set of filters for moving between
the different levels in the tree are allocated on each node. The filters at the lower several
levels of an FMM tree are based on moderate sized matrices. Without local filters. Uptree
and Downtree do not scale properly because there is a bottleneck when all processors try
to fetch the matrices out of a single node. Similarly, the shift operators A are replicated
in each node since there are at most eight per level. (Except for the [ = 0 shift operators,
which are computed as needed.)

Each thread allocates the field variables s and g for its groups as well as local thread
temporary storage (and working storage for the FTT routines used by the filters). In
addition, every thread allocates and computes its share of translation operators (x) that
are used by all threads. Replication of the translation operators is unfeasible due to their
size. This will have implications which are treated in Section 4.3.

The end result is that each node contains filters (and interpolators), shift operators,
group field variables s and g, thread local storage, and a share of the translation operators.
All of the other data structures required for the FMM, and there are many, are allocated
without concern for placement because they are not performance critical.

4.3 Application of Translation Operators

Applying the translation operators in a scalable way is more problematic. Here the fields
of all far away groups from a particular group are translated, converted to a j-expansion
valid inside the group, and summed. It is likely that the field of a far away group will be
in a remote node which makes this step highly cache sensitive. If naively implemented,
the application of translation operators scales very poorly. Developing a method so that
remote fields (fields of far away groups that are stored in remote nodes) are brought into
the local cache and reused several times is essential to the overall scaling of the algorithm.

A simple observation is the key to scalability. Consider several groups that are
neighbors, i.e. close together in space. If one of these groups needs a particular remote
fleld, it is likely that its neighbors will also need the field since the distances between the
neighbors and the remote group are roughly the same. The essential idea is to translate
the remote field to all of the neighbors in succession which brings the field into the cache
and reuses it many times.

To implement this idea, we need a ordering (numbering) of the groups for each level
in the tree that keeps groups that are close together in space also close together in the
ordering. Such an ordering is given by a breadth-first traversal of the group tree. A
breadth-first traversal at a level is defined as follows. For the top-most level H — 1 the
traversal is just to visit the single top-most group. To traverse level | < H — 1, visit all of
the groups which are at level [ + 1 in breadth-first order and for each level I + 1 (parent)
group visit each of its subgroups. Since the subgroups are contained within the region of
the parent, we get an ordering that keeps groups close together in space. This ordering is
analogous to the Morton order reported in [10].

One final issue has to do with the small size of the cache. The basic loop for applying
translation operators applies all operators to a group m before moving on to the next group
in the ordering. It must be done this way in order to keep g, (the far field representation




Processors | Time (s) Speedup Efficiency (%)
1 607.9 1 100

2 298.4 2.0 100

4 152.3 4.0 100

8 79.6 7.6 96

16 42.6 14.3 89

32 23.6 25.9 81

TABLE 1

Scalability of threaded multilevel FAMM.

of the j-expansion for the group) in the cache as well. Caches are too small, however, to
keep all of the remote fields at once, defeating the purpose of the ordering. The solution is
to translate only a piece of the far field representation of a far away group at a time. The
specific size of the pieces depends primarily on the cache size, but limiting the piece size
kps to about kps = 80 double precision complex numbers has worked well in practice on
several machines. So, at a given level, the ordering is traversed translating a piece of the
far field representation for each group. At the end of the ordering. the process moves on
to the next piece of the representation. This is repeated until all the far fields have been
translated at that level. The code then continues onto the next level. The algorithm is very

cache friendly.
In detail, translate is implemented as follows:

for (l€0...H-1)
for (kk =0;kk < K5 kk = kk + kps)
ksize = min(kslice, K| — kk)
for (m € first(Cy,p)...last(Cy,p))
for (m' € far(m))
for (ke kk.. kk+ksize—1)
Imk = Gmk + Tmm’ksm’k

where Tk = p(ﬁ", Xm—X ). These are the quantities that are precomputed in the setup
phase. The effectiveness of the new implementation is demonstrated in the next section.

5 Results

The scaling of the threaded multilevel FMM apply algorithm is given in Table 1. Listed is
the apply time in seconds versus the number of processors for a 16 radius sphere discretized
by 153,600 unknowns. Also listed is the speedup Sp = T1/T, where T, is the apply time
for p processors, and the parallel efficiency 100S,/p. The scaling is very good, with 32
processors achieving 81% efficiency.

The effect of the technique used to apply the translation operators is shown in Table 2
for the same problem. The table shows the total time spent by all processors in the Translate
step. Using the technique described in Section 4.3 , the effort to apply the operators grows
by 29.3% as the number of processors increases from 1 to 32 (the elapsed time is 82.5s for
1 processor and 3.33s for 32 processors). In contrast, if the operators are applied naively
without ordering the groups or dividing up the far field directions for cache efficiency, the
effort to apply the operators grows 173% and begins to take a substantial fraction of the
total apply time.

The scaling of the apply can be further improved by additional tuning in Uptree and
Downtree. The main problem is that static data for the filters is not replicated across the




Processors 1 2 4 8 16 32
Scalable (s) | 82.5 81.7 83.7 88.2 945 106.7

Unscalable (s) | 99.1 1104 1245 158.8 2049 271.0
TABLE 2

Time spent doing translations versus number of processors for scalable and unscalable imple-

mentations.

nodes which causes a bottleneck (filter dynamic data. like the matrices, are replicated).
This can be improved with some programming effort.

6 Concluding Remarks

The threaded approach taken here has some advantages over explicit message passing.
Often some of the interprocessor communications required in complex parallel codes are not
performance sensitive. Such communications can be handled automatically by the hardware
in a threaded shared memory approach without burdening the programmer. Making the
performance sensitive parts work properly, i.e. scale, is largely an exercise in tuning the
caches which must be done regardless for good uniprocessor performance.

In addition, there is a maintainability benefit. As fast scattering codes gets more
complicated, with the addition of support for complex materials and subwavelength
structures, the load balancing problem implicit in message passing codes will become very
complex. Parallelizing such codes will be easier in a shared memory environment.

Significantly, the compact size of the FMM allows the exploitation of another form of
parallelism: computing the scattering from multiple incident angles. With large O(N?)
operators the entire machine would be needed just to store the operator. The FMM is
far more compact and can be replicated several times in a supercomputer, making the
multiple angle problem embarrassingly parallel. The same is true for design optimization
(parameter) studies.

The parallel FMM presented here is part of the FastScat program for performing
electromagnetic scattering calculations. Recently, FastScat computed the radar cross
section for both polarizations of an 40\ radius sphere to 0.16 db rms accuracy in 20.7 hours
on a 32 node Origin 2000%. The target was over 20,000 square wavelengths. The ability to
accurately compute the RCS of such a large target is due to the FMM, a discretization of
the integral equation that is of high order[1], and a scalable paralle]l implementation of the

FMM.

Acknowledgements

The results presented here were from runs at the Army Research Laboratory Major Shared
Resource Center. I would like to thank John Visher of HRL Laboratories for implementation
assistance and Tom Kendall of ARL MSRC for support in using the machines.

References

(1) L.F. Canino, J.J. Ottusch, M.A. Stalzer, J.L. Visher, and S.M. Wandzura, Numerical
solution of the Helmholtz equation in 2d and 3d using a high-order Nystrom discretization,
J. Computational Physics, 146, 1998, pp. 627-663.

'This calculation was performed with an earlier version of the FMM code described here.




10

(2] R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method: a pedestrian
prescription, IEEE Antennas and Propagation Mag., 3 (35). June 1993. pp. 7-12.

(3] M.A. Epton and B. Dembart. Multipole translation theory for the three-dimensional Laplace
and Helmholtz equations. SIAM J. Scientific Computing. 4 (16). July 1995, pp. 865-897.

[4] L. Greengard and W.D. Grop, A parallel version of the fast multipole method. Computers
Math. Applic., 20 (1990), pp. 63-71.

[5] M.F. Gyure and M.A. Stalzer, A prescription for the multilevel Helmholtz FMM, IEEE
Computational Science & Engineering, July-Sept. 1998, pp. 39-47.

[6] V. Rokhlin, Diagonal form of translation operators for the Helmholt: equation in three
dimensions, Applied and Computational Harmonic Analysis, 1(1). Dec. 1993, pp. 82-93.

[7} V. Rokhlin and M.A. Stalzer, Scalability of the fast multipole method for the Helmholtz
equation, Proc. Eighth STAM Conf. on Parallel Processmrr for Scientific Computing. March
1997, Minneapolis, MN.

(8] J.P. Singh, C. Holt, J.L. Hennessy. and A. Gupta, 4 parallel adaptive fast multipole method,
Proc. Supercomputing '93. Nov.. Portland. OR, pp. 54-65.

(9] M.A. Stalzer, A parallel fast multipole method for the Helmholtz equation. Parallel Processing
Letters, 2 (5), 1995, pp. 263-274.

[10] M.S. Warren and J.K. Salmon, A parallel, portable and versatile treecode, Proc. Seventh SIAM
Conf. on Parallel Processing for Scientific Computing, Feb. 1995, San Francisco, CA.

(11] N. Yarvin and V. Rokhlin, 4 generalized 1D fast multipole method with applications to filtering
of spherical harmonics, tech. report, 1999, Dept. of Computer Science, Yale University, New
Haven, CT.



Scalable Electromagnetic Scattering Calculations

on the
SGI Origin 2000*

John J. Ottusch Mark A. Stalzer John L. Visher
Stephen M. Wandzura

Information Sciences Laboratory
HRL Laboratories, Malibu, California

March 24, 2000

Abstract

We describe the FastScat™ program for electromagnetic scattering calculations and its parallel
implementation on the SGI Origin 2000. FastScat recently computed the radar cross section of a sphere
having an area of 45, 239A? to high accuracy in about a day. This is contrasted with a result for an 3542
sphere reported at Supercomputing ‘92. Taking both size and accuracy into account, the FastScat result
represents an improvement in solution time of over nine grders of magnitude. This improvement was
due to systematically focusing on several issues that impact the scalability of electromagnetic scattering
calculations.

1 Introduction

This paper presents the FastScat™ program for efficiently performing frequency domain electromagnetic
scattering calculations using a boundary integral equation formulation on parallel computers. Typical
applications include radar cross section (RCS) prediction, the computation of antenna radiation patterns,
and high-frequency circuit package modeling. FastScat is a truly scalable code in that:

e additional accuracy in a computed solution can be achieved at low cost;
¢ asmall increase in problem size (area) causes only a modest increase in computer resources; and
o the code shows good parallel scalability.

The scalability of FastScat allows us to perform scattering calculations for very large objects. As an example,
FastScat recently computed the RCS of a metal sphere having an area of 45,2392 (radius r = 60) to high
accuracy in about a day. This is in contrast to the result for an 354\2 sphere computed by the Patch code
running on the Intel Touchstone Delta reported at Supercomputing *92[3]. Taking both size and accuracy into
account, the FastScat result represents an improvement in solution time of over nine orders of magnitude.
Scattering cross sections and radiation patterns can be computed by solving a matrix equation, Z-1 =V,
derived from the discretization of an integral equation. The number of unknowns N required for accurate
modeling of such problems can be very large, which can severely limit problem size. The system can be
solved by factoring the dense matrix Z (using O(N?) operations), or by using an iterative method which
requires O(N?) operations per iteration. Each iteration of an iterative solver involves the multiplication of

“This work was supported by the Defense Advanced Research Projects Agency, the Air Force Office of Scientific
Research, Hughes Electronics, and the Raytheon Systems Company. Computér runs were performed at the Army
Research Laboratory’s Major Shared Resource Center in Maryland.
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an approximate solution / for the source distribution by the impedance matrix Z. The iteration count must
be controlled to achieve reasonable solution times.
There are four important solution method characteristics required to achieve scalabilty:

® The method must be high order. It is desirable that computed solutions converge as h. the characteristic
scale size of the discretization, decreases. For boundary integral solutions to scattering problems, the
error € generally scales as € o hP, where p > 1 is the order of convergence. Most codes based on
the Method of Moments, such as Patch, are low order: € o hZ2. In contrast, FastScat is high order
and values of p up 10 are routinely used. High order convergence allows us to get extra accuracy
for minimal additional computational cost. This is essential for estimating the solution error and
computing scattering from objects with large dynamic ranges[1].

 The method must be fast. An O(N?®) method is feasible only for small problems. By using an
iterative solver and switching to the Fast Multipole Method (FMM)[2, 4, 6, 7, 9], the time complexity
can be reduced to O(C;N log? N) where C; is the iteration count. The FMM constructs a sparse
representation of Z which is used to efficiently compute the product Z - I.

o The integral equation must be well conditioned. FastScat uses a Combined Field Integral Equation
formulation (CFIE)[9] which results in a well conditioned operator for many scatterers. The CFIE, in
conjunction with a simple preconditioner and a conjugate gradient solver, keeps the iteration count C,
reasonable.

o The implementation must have good parallel scalability. The crucial parallel operation in FastScat
is applying the FMM. All other computations are either embarrassingly parallel or are so cheap that
they can be done on a single processor. A substantial amount of work has been done on parallelizing
the FMM for the Laplace equation[5, 8, 13]. For electromagnetic scattering, the Helmholtz FMM
is required. Achieving good parallel scalability with this variant of the FMM poses some additional
challenges[10, 11].

Some parts of this work have been previously reported[1, 6, 9, 11]. Here we show how all of the parts fit
together to enable the solution of very large scattering problems. In total, we believe this work serves as the
current benchmark for the state of the art in frequency domain electromagnetic scattering calculations.

This paper is organized into a section on each aspect of scalability, followed by a results section and
some concluding remarks.

2 Discretizating the Integral Equation
Here we consider a prototypical scattering problem — 3d scalar scattering with Dirichlet boundary conditions
— to show how the linear system V' = Z - I is formed. This will set the stage for the following sections on

discretizations and the FMM.
A specified field ¢(x) on a surface S induces an unknown source distribution o(x') on S. This

distribution radiates a scattered field

w(x) = [ Glx=x)o(x)ix M
s
where the Green function is }k
e! o T
G(r) = - 2)

ko is the wave number (ko = 27 in free space for dimensions in wavelengths), and r = |x — x'|. Applying
the Dirichlet boundary condition ¢(x) + 1(x) = 0 for x on S, gives

¢(x)=~- [ G(x—-x")o(x)dx’, xonS. (3)
s

For a moment, ignore the singular nature of G. This integral can be evaluated numerically by choosing a
suitable V-point quadrature rule. Evaluating Equation 3 at the ith abscissa of the quadrature rule gives

N
Vi= —'ijGijIj 4)
Jj=1




where V; = ¢(x;), Gi; = G(x; — X;), and w; is the weight of the jth sample point (at X;) of the quadrature
rule. We want to solve this linear system for the unknown sources J. From I, we can easily compute the
scattered field at any place exterior to S.

Equations equivalent to Equation 3 are also available for electromagnetic scattering. FastScat uses the
Combined Field Integral Equation formulation which is well conditioned and immune to spurious internal
resonances[9]. Using the CFIE in conjunction with a simple preconditioner' and a conjugate gradient type
solver keeps iteration counts reasonable. For the r = 60\ sphere, only 19 iterations were required for roughly
two digits of accuracy.

3 High Order Discretizations

The quadrature rule used in Equation 4 is selected so that it integrates a certain class F of functions over S
exactly. If the source distribution can be represented exactly as an expansion over F then the convolution
can be computed exactly.

In practice, the source distribution on an arbitrarily-shaped surface can be well approximated by dividing
it into patches and locating the sample points on each patch according to a quadrature rule that can integrate
polynomials exactly up to order p. In the case of quadrilaterals, an appropriate rule is formed from the
product of two Gauss-Legendre rules. Analogous rules exist for triangles[12]. The overall discretization will
converge with O(h?) assuming expansions over F are accurate to that order.

This works extremely well for regular kernels, but Nature is not so kind and the Helmholtz kernel
G behaves poorly as the points 7 and j become close. When this happens, the quadrature rule needs to
be adjusted to account for the singular and oscillatory nature of G. The proper adjustment is achieved by
replacing the discretized Green function in Equation 4 by

Gi; = { G(x; —x;) if x; is far from x; )

L;; otherwise

where the L;; are known as the “local corrections™[1]. The definition of *“far from™ depends on the desired
accuracy. In practice it is about a half wavelength for two digits.
For a given field point 7, the L;; are computed by solving the linear system

> wiLi fR (xi — x;) = / G(x; — x') f®) (x; — x')dx’ (6)
i D

for all the testing functions f*) in F. The region D; is the local domain of the ith field point. This region
is determined by computing the right hand side of Equation 6 adaptively, on a patch by patch basis, and
comparing it to the left hand side quadrature. This procedure proceeds until the difference is below some
error tolerance. The local corrections L;; for points outside of D; are zero so the linear system is small. The
number of points in D; may be different from the number of testing functions in F, in which case, singular
value decomposition is used to solve the system. However, it is often possible to arrange the system so that
the number of points and functions are the same. This approach restores the desired order of convergence,
which has been shown on many scatterers.

In terms of scalable scattering calculations, high order discretizations allow us to check the accuracy of
solutions relatively cheaply. They also allow us to often compute a solution to a given accuracy with fewer
unknowns.

4 Fast Multipole Method
The FMM computes B; = 3. w;G;;I; (Equation 4) for all points ¢ in O(N log® N) time. This is the
product Z - I needed by the iterative solver. This section presents the basics of the Helmholtz FMM.

"The preconditioner is block diagonal and represents the inverse of some FMM group self-interactions. It works well
for many scatterers, but does not remove all of the ill-conditioning in the formulation. Generalizations to the CFIE are
currently being explored and some look very promising.

-
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Consider two well-separated spheres of radius R, and Ry, each containing a collection of Helmholtz
sources. We want to quickly evaluate the field generated by all the sources in R) at every source in R». This
field can be written as a multipole expansion valid outside of R as

U(r) =D Bimhi(kr)Yim (8. 0) (7)
im

where 7,8, and ¢ are relative to a coordinate system centered in Ry. h;(kr) are spherical Hankel functions
of the first kind, and Y},,(6. ®) are normalized spherical harmonics. We refer to this expansion as an h-
expansion. Similarly, we can write an expression for the field valid inside Ry

o(r) = Zalmjl(kr)};m(e’é) ®)
Im

where the coordinate system is now centered in R,, and Ji(kr) are spherical Bessel functions. We refer to
this expansion as a j-expansion. For the moment, we consider both of these to be infinite sums. The FMM
then rests on three observations:

e The origin of an h-expansion can be shifted arbitrarily inside R;, and a new set of coefficients, B,m,
can be computed for this new expansion. The same holds for shifting a j-expansion arbitrarily to a new
origin inside of Rs, which results in a new set of coefficients, ay,y,.

* An h-expansion valid outside of R; can be translated and converted into a J-expansion valid inside R,.

e Most crucial, these shifts and translations can be done efficiently by transforming the coefficients into
a basis in which both operators are diagonal.

The far-field transform of an arbitrary function f (fc) is

FlRY =" Y (R) fim ©)
im
and the inverse transform is given by
fim = /dl%i"}’,;(i%)f(ic) (10)

where & is a unit vector represented by polar and azimuthal angular components (kg,kg).
It is in this k-basis that the shift and translation operators are diagonal. An h-expansion in its far-field
basis is shifted from a point x to another point x’ both inside of R, by

Blk) = Mk, x" - x)B(k) (11)

where A is given by
/\(]:"x/ -X) = etkok (x'—x) (12)

The same shift operator A also applies to Jj-expansions. It represents a “local” shift in the group center,
retaining the exterior or interior expansion.

The translation of an h-expansion into a J-expansion is through the translation operator p, which, in the
far-field basis is

uk,x = x) = 3 i (2 + Dhy(kolx’ — x|)By(k - (x' = x)/|x'  x|) (13)
1

where the P, are Legendre polynomials.

In practice the expansions are truncated to a finite number of terms L depending on the group size and
desired accuracy. The mathematical validity of this truncation is addressed by Rokhlin[7] but it is related to
the fact that these series are asymptotic and are, therefore, of controllable accuracy. Empirically, it has been
determined that the number of terms L needed in the expansions for a region of diameter D is[2)

L =kyD+ % log(koD + 7) (14)
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where d is the desired number of digits.

The above expressions for the translation operators, together with the far-field transform, are the basic
tools used to construct a multilevel FMM algorithm. Clearly the field caused by a collection of sources inside
an arbitrary group G can be evaluated at any point inside a second group G5 by converting the exterior h-
expansion, valid outside G1, to an interior j-expansion which is valid inside G». Also, we can calculate the
field at that point caused by the sources in G; by computing &oo, the leading term in the j-expansion. No
other terms contribute, because the expansion is already centered at the field point where 7 = 0 and all the
terms j;(0) are zero except for jo which is one. Thus, we can evaluate the field directly through the far-field
transform as

#(0) = Ggo = 71_/:'/&%&(1%). (15)

The abcissae k = (ke, kg) of the numerical quadrature rule used to compute this integral are selected so that
it can be performed exactly. One choice is to use a trapezoidal rule of 2L points in the ¢ direction and an L
point Gauss-Legendre rule in the § direction. This discretization of the & basis is used throughout the FMM.

The multilevel Helmholtz FMM works in fundamentally the same way as the Laplace FMM in that it
combines expansions valid inside the original groups to form expansions valid inside correspondingly larger
groups with bigger group diameters. This recursive regrouping results in a tree-like structure that has groups
of different sizes at different levels of the tree. The h-expansions from neighboring groups are shifted and
combined into a single h-expansion representing a larger group when going up the tree, and j-expansions in
a large group are converted to smaller groups going down the tree. The details of this process are given in
Section 5.1.

There is, however, an important mathematical detail. When going up the tree, it is necessary to
interpolate the far-field representation of a group at one level onto the denser (k more closely spaced)
basis of the group one level higher. Similarly, when going down the tree, it is necessary to convert to a
sparser basis in a filtering process. In both cases, the code converts from the far-field basis to the multipole
coefficients and then back to the new far-field basis using the definitions given in Equations 9 and 10. The
actual implementation is in terms of fast Fourier transforms for the k,, direction, and fast associated Legendre
transforms for the kg direction[14]. As a practical matter, a slow associated Legendre transform which is
implemented in terms of matrix multiplication can be used on rather large problems because of the small
prefactor in its time complexity relative to the fast transform. However, fetching the transform matrices from
memory causes some scalability problems which are addressed in Section 5.2. The details of the filtering
and interpolation processes are given in [6].

5 Parallel Implementation

FastScat is implemented in a threaded style assuming a cache-coherent distributed shared memory machine.
On the 02000, it uses IRIX threads (SPROCs)[11]. A POSIX threads version is also available. It order to
achieve parallel scalability, it is essential that the local processor caches be used effectively and that selected
data structures are replicated to reduce network contention.

A FastScat run progresses through three phases: setup, solve, and RCS computation. The setup computes
the local corrections L;;, and is embarrassingly parallel. The scalability is good to about 32 processors and
then begins to fall off due to contention over the discretization data structures. The RCS computations are
also easy to parallelize. Perfect scalability in the setup and RCS phase are not presently a concern since, on
practical problems, FastScat spends most of its time solving for the surface currents for various excitations
(“look angles™)?.

The solve phase uses the iterative solver, preconditioner, and FMM. The preconditioner can be
applied in parallel easily (backsubstitution of the blocks), and the iterative solver does inner products over
relatively short vectors (at most a few million elements) which can be done on a single processor. Naive
implementations of the FMM, however, scale very poorly. On the 02000, there is hardly any benefit to using
more than a few processors. The remainder of this section describes the implementation of FastScat’s parallel
FMM.

*The sphere run spends more of its time in setup since there is only one look angle.




5.1 Parallel FMM

There are two primary FMM routines: setup which builds the data structures, and apply which computes the
product Z - I.

The setup routine works as follows. First, a tree of groups is constructed. The lowest level (I = 0)
groups contain elementary sources. Each higher level group at some level /. contains up to eight level [ — 1
subgroups of one half the size in each linear dimension. However. since a surface is being discretized, the
typical number of subgroups is about four. The top of the tree consists of a single group which contains
the entire scatterer. The quantity H is the height of the tree in levels, and the topmost level is H — 1. Let
groups(l) be the set of groups at level I. and M, be the number of elements in this set. Denote the parent
of a group m by m,,. Finally, let L; be the number of terms in the expansion at level { as determined by
Equation 14.

For each group m two sets (lists) are constructed, nearby(m) and far(m), based on the following
conditions:

m' € nearby(m) iff koXmm: < Li. (16)
m' € far(m) iff m' ¢ nearby(m) and komem;u < Li; (17)

where m and m’ are members of groups(l), and Xmm' is the vector between the group centers X,,, and
Xm. In other words, a group is in the nearby list of m if it is too close to use the translation operators at that
level. Otherwise, it is in the far list as long as the parents of m and m’ are too close to use their translation
operators. Interactions between sources are accounted for at the highest possible level.

Once the tree is constructed, various quantities, such as the translation operators are computed. The
setup routine is called only once.

When the iterative solver needs to compute B = Z - I, it calls the apply routine. For most problems,
FastScat spends most of its time in apply. Apply is implemented in terms of P threads where P is the number
of processors. The apply steps are written in terms of loops over groups and it is a simple matter to split these
loops over the threads. These loops are controlled by a thread-safe counter that has two primary routines:
reset(C) and next(C, p), where C is a counter and p is a thread number. The reset routine sets the counter
to zero and acts as a barrier. The next routine returns the next value of the counter. The basic usage is that all
the threads initialize the counter to zero with reset, and then enter a loop getting the next value of the counter
until all the groups at a given level have been processed. In addition, there are two routines first(C,p) and
last(C, p) which together define a sequence of groups first(C,p).. .last(C, p) that thread p can process
efficiently because the data structures for the groups have been allocated locally (see Section 5.2).

To compute B = Z - I, each thread p does the following:

Local-to-Far: The far-field basis of each | = 0 group is constructed from its sources. There is no need to
compute the multipole coefficients since it is a simple matter to compute the far field directly from the
sources.

for (reset(Co)im < Mo;m = next(Co,p))
for (k€0...Ko—1)
Smk = ZaEsources(m) A(k’ Xm — Xa)Ima

Note that at every level in the tree, there is a counter C; controlling the iterations at that level. The
number of far field directions at a level is K; = 2L? using the quadrature rule described in Section 4.
It should be clear that each value of an index k represents some k = (kg, k) in the discretized far field
basis for that level. The sources of a [ = 0 group m are sources(m), and the location of a source a is
Xa. The vector s is simply the 3(k) quantities of Section 4.

Uptree: The far fields due to each subgroup of a group are interpolated and shifted to the group’s center and
accumulated to form the far field basis of the parent group.

for (lel...H-1)
for (reset(Ci);m < Mi;m = next(Ci,p))
for (m’ € subgroups(m)) .
5ms = interpolate(s,,)



for (k€0...K;-1)
Smk = Smk + )\(}:f-xm - Xm’)gm’k

Translate: For each group m, the far field of each far away group is translated to m. converted to a j-
expansion, and accumulated. This gives the field due to all groups far from m as a j-expansion valid
inside of m.

for ({€0...H-1)
for (m € first(Cy,p)...last(C,p))
for (m' € far(m))
for (k€0.K;-1)
Gmk = gmk + ,U:(fc, Xm — Xm’)sm'k

The vector g contains the a(I::) quantities.

Downtree: The j-expansions are walked down the tree in a way analogous to Uptree. The code works
downward from level H — 1, shifting the field gn, of group m to its subgroups and then filtering
(instead of interpolating). The parallel structure is just like Uptree.

Far-to-Local: At the bottom of the tree, the j-expansions are used to evaluate the field at each source due to
all far away sources. The procedure is the same as the Local-to-Far step except that k — —k. At the
end of this step, the result (B) has been computed for all far away interactions.

Direct: To account for interactions between groups that are too close to each other to use the FMM, the
locally corrected kernel (Equation 5) is used directly:

for (reset(Co);m < Mo;m = next(Co,p))
for (m' € near(m))
for (a € sources(m))
B = Bra + Z

o

a’€sources(m’) G(Xa = Xar) Lo
This description of the parallel algorithm is very similar to its sequential counterpart. The only complications
are operations on the counters, which look like regular loops. The similarities between the parallel and
sequential algorithm make implementation and maintenance easier.

This algorithm is for scalar (acoustic with Dirichlet boundary conditions) scattering. For the vector case
(electromagnetic), the work doubles because two field components must be kept for each source but the
algorithm is otherwise straightforward. The results in Section 6 are for electromagnetic scattering.

5.2 Data Placement

For most FMM steps, memory references tend to be localized to the data associated with a particular group
and its subgroups. In order to make these references efficient (accesses to local memory) each apply thread
p is assigned a sequence of groups first(Ci,p)...last(Cy,p) at each level . For example, if there are eight
groups at a level and two threads, the first thread gets groups 1...4 and the second thread gets 5. ..8. As
part of its initialization, each thread allocates certain key data structures, such as s and g for its sequence of
groups. These allocations will generally go to the local memory since a first-touch memory allocation policy
is used. Threads also set their processor affinities so that they are not moved away from their data structures
by the operating system. One additional point is that counter’s next(C}, p) routine first returns groups in
thread p’s sequence. Once the sequence is exhausted, it returns groups in the sequences of threads that are
lagging behind in the computation. This acts as a form of dynamic load balancing[11].

A modest amount of data replication is also required. The routines interpolate and filter used by
Uptree and Downtree contain several moderately sized matrices used in the filtering and interpolation process
(Section 4). These must be replicated a few times to reduce network contention and preserve the scalability
of Uptree and Downtree. Presently, FastScat replicates the matrices in every node (two processors), but this
is probably an overkill.




Processors | Time (s) Speedup Efficiency (%)
1 607.9 1 100

2 298.4 2.0 100

4 152.3 4.0 100

8 79.6 7.6 96

16 42.6 14.3 89

32 23.6 259 81

TABLE 1

Scalability of threaded multilevel FMM for a r = 16 sphere.

5.3 Scalable Application of Translation Operators

Applying the translation operators in a scalable way is more problematic. Here the fields of all far away
groups from a particular group are translated, converted to a j-expansion valid inside the group, and summed.
It is likely that the field of a far away group will be in a remote node which makes this step highly cache
sensitive. If naively implemented, the application of translation operators scales very poorly. Developing a
method so that remote fields (fields of far away groups that are stored in remote nodes) are brought into the
local cache and reused several times is essential to the overall scaling of the algorithm.

A simple observation is the key to scalability. Consider several groups that are neighbors, i.e. close
together in space. If one of these groups needs a particular remote field, it is likely that its neighbors will
also need the field since the distances between the neighbors and the remote group are roughly the same.
The essential idea is to translate the remote field to all of the neighbors in succession which brings the field
into the cache and reuses it many times. To do this, we need a ordering (numbering) of the groups for each
level in the tree that keeps groups that are close together in space also close together in the ordering. Such an
ordering is given by a breadth-first traversal of the group tree. This is analogous to the Morton order reported
in [13].

One final issue has to do with the small size of the cache. The basic loop for applying translation
operators applies all operators to a group m before moving on to the next group in the ordering. It must be
done this way in order to keep g,, (the far-field representation of the Jj-expansion for the group) in the cache
as well. Caches are too small, however, to keep all of the remote fields at once, defeating the purpose of
the ordering. The solution is to translate only a piece of the far-field representation of a far away group at
a time. The specific size of the pieces depends primarily on the cache size, but using a piece size (kps) of
80 double precision complex numbers has worked well in practice on several machines. So, at a given level,
the ordering is traversed translating a piece of the far-field representation for each group. At the end of the
ordering, the process moves on to the next piece of the representation. This is repeated until all the far fields
have been translated at that level. The code then continues onto the next level.

In detail, translate is implemented as follows:

for (I€0...H-1)
for (kk =0;kk < Ki;kk = kk + kps)
ksize = min(kps, K| — kk)
for (m € first(Ci,p)...last(Ci,p))
for (m' € far(m))
for (k€ kk...kk+ ksize—1)
Imk = gmk + Tmm’ksm’k

where T, ik = ,u(fC, Xm — Xym). These quantities are computed in the setup phase.

5.4 FMM Parallel Scalability Results

The scaling of the threaded multilevel FMM apply algorithm is shown in Table 1. The apply time in seconds
versus the number of processors is given for a 7 = 16X sphere discretized by 153,600 unknowns. The
speedup S, = T /T, (where T}, is the apply time for p processors) and the parallel efficiency 100S, /p are
also listed. The scaling is very good, with 32 processors achieving 81% efficiency.

Tuned and naive implementations of the translation operator application are compared in Table 2 for the
same problem. The table shows the total time spent by all processors in the translate step. The effort to apply




Processors 1 2 4 8 16 32
Tuned (s) | 82.5 81.7 837 882 945 1067
Naive (s) | 99.1 1104 124.5 1588 2049 271.0

TABLE 2

Time spent doing translarions versus number of processors for tuned and naive implementations.

Year 1992 1999
Code Patch FastScat
Computer Touchstone Delta  Origin 2000
Processors 512 64
Radius (A) 5.31 60
Area (\2) 354 45,239
Accuracy (db rms) | 2 (est) 0.12
Unknowns 48,673 2,160,000
Memory (Gb) 38 45.5
Time (hrs) 19.6 27.9
TABLE 3

State of the Art: 1992 vs. 1999

the operators grows by 29.3% as the number of processors increases from 1 to 32 (the elapsed time is 82.5s
for 1 processor and 3.33s for 32 processors). In contrast, if the operators are applied without ordering the
groups or dividing up the far field representation for cache efficiency, the effort to apply the operators grows
173% and begins to take a substantial fraction of the total FMM time.

6 Electromagnetic Scattering Results

FastScat was used to compute the bistatic RCS of a r = 60\ sphere for both polarizations on a 64 processor
SGI Origin 2000. Table 3 shows information from the run including problem area, accuracy (as compared to
the Mie series solution), number of unknowns, memory required, and run time. It is compared to the 1992
result from the Patch code on the Touchstone Delta. The FastScat run times by phase were 20.2 hours for
setup (mostly computing local corrections), 7.66 hours for the solve (computation of surface currents using
the FMM), and 1.04 hours to compute the bistatic RCS at 1,800 angles. Figure 1 plots the computed RCS
versus the Mie series solution. The two curves are nearly identical.

The Patch code used a tuned out-of-core solver to factor Z. The solver was carefully constructed to
overlap disk I/O, interprocessor communication, and computation, to achieve high performance. It sustained
a rate of 10.35 Gfiops, which was within a factor of 2 of the theoretical maximum rate of the Delta for the
inner loop of the computation. The Patch/Delta result represented the largest reported scattering run to date
in 1992.

It would take Patch/Delta some time to match the FastScat result in both size and accuracy. In order
for Patch to achieve an accuracy of roughly 0.2dB, the number of unknowns would have to be increased by
about a factor of 10 due to the O(h?) convergence rate of its discretization. The difference in area is over a
factor of 100. Taken together, the unknown count must increase ~ 1000 fold. Since the factorization process
is O(N3), the run time can be expected to increase by roughly nine orders of magnitude.

We have used FastScat to compute the RCS of a variety of benchmark targets. Figure 2 shows the
currents induced on the Dart, a standard test case, at 18 GHz with the incident radiation nose-on. At this
frequency, the Dart is 4441)? in area and is discretized by 436,000 unknowns. Figure 3 show the monstatic
RCS in both polarizations using an over-the-top scan. This scan goes from the back at -90 degrees to the tip at
90 degrees. By using convergence studies, which are relatively inexpensive with a high order discretization,
the error has been estimated at approximately 0.1dB in the high RCS regions and roughly 2 dB in the stealthy
regions (near the tip). FastScat required 8.3 Gb of memory, did the setup in 3.0 hours, and solved for each
monostatic angle in an average of 17 minutes. A 32 processor Ori gin 2000 was used. At 436,000 unkowns,
the 18 GHz Dart is too large for dense matrix techniques even on the biggest supercomputers.
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FIG. 2. Computed surface currents of the Dart at 18 GHz.
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All of the runs in this section were done in a production environment where FastScat was sharing
machine resources with other jobs. Generally the load average did not exceed the number of processors,
but this was not always the case.

7 Concluding Remarks

A purpose of this paper is to put forth a more general notion of scalability. Parallel scalability is important
since only scalable parallel codes utilize large, expensive computers effectively. But Moore’s law and big
iron are no match for algorithmic scalability.

The Helmholtz FMM and contemporary large computers are complementary. Consider a slow O(N3)
method with a small prefactor. For these methods, large computers confer little advantage. A modest increase
in the number of unknowns quickly exceeds the capacity of even the largest machine. As a result of increased
microprocessor performance and microprocessor count (from a few hundred to a few thousand), modern
supercomputers are nearly 100 times faster than the Delta. Yet even on these machines, codes that do not
take advantage of the algorithmic advances can only do problems about 4 times larger than what the Delta
did in 1992. In contrast, the Helmholtz FMM has superior asymptotic complexity but a large prefactor. It
takes a fairly big machine just for the FMM to breakeven with respect to the slow method. But the benefit is
that you can move out to much larger problems and still stay within the available machine resources. High
accuracy solutions for problems exceeding a million square wavelengths are possible on the largest present
day machines with modern algorithms.

The FastScat development effort is continuing in the areas of modeling subwavelength structures such
as edges and gaps, and in the incorporation of material properties. We see no reason why these extensions
can not also be accomplished in a scalable way.
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The need to filter functions defined on the sphere arises in a number of applications,
such as climate modeling. electromagnetic and acoustic scattering, and several other
areas. Recently, it has been observed that the problem of uniform resolution filtering
on the sphere can be performed efficiently via the fast multipole method (FMM) in
one dimension. In this paper, we introduce a generalization of the FMM that leads
to an accelerated version of the filtering process. Instead of multipole expansions,
the scheme uses special-purpose bases constructed via the singular value decompo-
sition of appropriately chosen submatrices of the filtering matrix. The algorithm is
applicable to a fairly wide class of projection operators: its performance is illustrated
with several numerical examples. @ 1998 Academic Press

Key Words: singular value decompositions; fast algorithms; spherical harmonics.

1. INTRODUCTION

The fast multipole method (FMM) [6] is an O(n) algorithm for calculating electrostatic
potentials at n points due to a set of n charges. Variants of it exist in one [3, 15], two
[6, 9], and three [7] dimensions. While the two- and three-dimensional variants have found
direct uses, the one-dimensional version is normally used as a step in the solution of other
numerical problems (see, for example, [3]). One such use of the one-dimensional FMM
has recently been published by Jakob-Chien and Alpert [10], in an algorithm for the rapid
uniform resolution filtering and interpolation of functions on the sphere; that algorithm has
uses in the solution of partial differentia] equations on the sphere [13], in fast algorithms for
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GENERALIZED 1D FMM AND SPHERICAL FILTER

electromagnetic scattering [4]. and in several other environments. In this paper. we describe
a version of the one-dimensional FMM which has been generalized so as to calculate
not only electrostatic potentials. but a wide class of similar kernels. and we describe an
accelerated version of the algorithm of [10] in which two subroutine calls to the original
one-dimensional FMM are replaced by one call to the generalized FMM.

Formally, this paper describes an algorithm for the following task: given an n x 1 matrix
P of a certain structure and given a desired accuracy €, compress P so that its product with a
vector can be efficiently computed to that accuracy. The structure the algorithm requires of
P is as follows: there must exist numbers x; < x> < -++ <X, and v} <ya < --- < ¥, such
that. roughly speaking. any submatrix of P which is separated in index space from the line
x; = ¥; by a distance greater than its own size has a rank less than some (reasonably small)
number r, to the precision ¢: the CPU time taken by the algorithm for multiplication of P
by a vector is then O(nr). (A rigorous accounting of the execution time of the algorithm is
somewhat complicated and is given in Section 3.2.6.) One matrix P = [p;;] which has such
a structure is given by the formula

1
pij= —— (1

Yi —Xj
and is the matrix whose multiplication by a vector is implemented by the original one-
dimensional versions of the FMM.

This paper is arranged as follows. Section 2 briefly reviews numerical tools used by the
algorithm. Section 3 describes the generalized FMM in its basic form. Section 4 describes
modifications to the algorithm of Section 3, the principal one of which is the diagonalization
of roughly a third of the interaction matrices. Section 5 contains numerical results for
the generalized FMM applied to the matrix (1). Section 6 describes modifications to the
algorithm of [10] which incorporate the generalized FMM. Finally, Section 7 examines
generalizations of the schemes presented in this paper.

2. NUMERICAL PRELIMINARIES

2.1. Singular Value Decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis. given
for the case of real matrices by the following lemma (see. for instance. [ 14] for more details).

LEMMA 2.1. Foranyn x m real matrix A. there exist an integer p. ann x p real matrix
U with orthonormal columns. an m x p real matrix V with orthonormal columns. and a
p X p real diagonal matrix S = [s;;] whose diagonal entries are nonnegative, such that
A=USV*and that sj; > si+1;+1 foralli=1....,p— L

The diagonal entries s;; of S are called singular values of A; the columns of the matrix
V are called right singular vectors: the columns of the matrix U are called left singular
vectors.

2.2. Least Squares Approximation

This section contains three lemmas on the least squares approximation of matrices, proven
in a more general setting in [15]. In this section and in the remainder of the paper R"" will
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-

denote the space of all real n x m matrices. and the matrix norm used will be the Schur or
Frobenius norm: that is. for an # x m real matrix A = [a;;].

n m

\';Z_‘Tau (2)

LEMMA 2.2, Suppose A is a p x n real matrix. B is an m x k real matrix. and C
is a p Xk real matrix. for some m. D. n and k. Let A= U S4V be a singular value
decomposition of A. and let B =U SB\ p be a singular value decomposition of B. Ler r
be the number of nonzero singularvalues of A. and let q be the number of nonzero singular
values of B. Let Uy and V, consist of the first r columns of Uy and V. respectively, and
let S consist of the first r rows of the first r columns ofS4 Let Ug and Vg consist of the
first g columns of Ug and V. respectively. and let Sg consist of the first ¢ rows of the first
g columns of Sg. Then the solution X of the minimization problem.

Al =

min [ AXB - CJ. 3)
is given by
X =Vv,8;'UiCVv, S5 Up. (4
Furthermore.
||AXB—CH=||C—UAU:CVBV§H. (5)

The following lemma provides a bound. in certain situations. on the error of the approx-
imation given by Lemma 2.2,

LEMMA 2.3, Under the conditions of Lemma 2.2. suppose that there exist an n x k
matrix D and an p x m matrix E such that

IAD — Cl| < ¢ (6)

and
HEB — C} < eés. (D

Then
IAXB ~C|l <& +e. (8)

As shown by the following lemma. the error bound of Lemma 2.3 also applies when a
different formula for the minimizing matrix is used.

LEMMA 2.4, Under the conditions of Lemima 2.3. let the n x m matrix Y be given by
the formula

Y =DVyS;'U;. 9)
Then

TAYB - C|| <& +e&n. (10)
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3. BASIC FMM

This section describes the generalized FMM of this paper. It is described as a set of
modifications to the FMM of [6. 3]: the reader is assumed to be familiar with that algorithm.

The overall FMM structure of an upward pass for creation of far field expansions. fol-
lowed by a pass which computes local expansions from far field expansions. followed by
a downward pass which propagates local expansions to lower levels and evaluates them. is
retained. However. all the expansions are different. being based on singular value decompo-
sitions rather than on analytical formulae. In addition. the hierarchical subdivision scheme
is different. being performed according to matrix indices rather than according to point
locations. (The expansions used permit almost any subdivision scheme. whether adaptive
as in [15]. or nonadaptive as in [3]: the present scheme was chosen solely for its simplicity.)

3.1. Subdivision Scheme
The hierarchical subdivision is performed on column indices of the matrix P. as follows:

e Each interval of column indices. if it is divided. is divided into two intervals of equal
size (or differing in size by one. if the number of indices in the interval is odd).

e The subdivision is uniform: either all the intervals at any given depth of the tree are
subdivided. or none are.

o The subdivision process continues until the lowest-level intervals are as close as pos-
sible to a user-chosen size.

For each interval [ ji. /2] of column indices produced by the above process. a correspond-
ing interval [i;. i>] of row indices is chosen such that the portion of P addressed by the two
intervals of indices contains as much as possible of the line x; = v ;. The precise criterion
used to choose the interval [i;. i»] is that it should be the interval of maximal size such that

(le—l +.\'j])/2 Sy <<y, < ()Cj: +.\'j2+1)/2. (11)

(If xj,—1 or x;,4 does not exist, the corresponding inequality in the above equation is not
enforced. The quantities x; < x> < --- < x,,, and Y <y < --- <y, were, in the present
implementation, user-provided: in an environment where they are not readily available, they
can be determined by numerically searching P for areas of high numerical rank.)

3.2. Expansions

This section describes the expansions used in the generalized FMM. Submatrices of P
will be designated as follows: P, , denotes the portion of P whose column indices are in b
and whose row indices are in a. where a and b are either intervals of indices into P, orsets
thereof.

For each interval, the FMM divides the intervals at the same depth in the tree into two
sets:

o 1. The near field region. consisting of the interval itself and the two adjacent intervals
at the same depth in the tree of intervals.

e 2. The far field region, consisting of all remaining intervals at the same depth in the
tree. We denote the far field region of the i°th interval by F;.
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A third set is also required: the interaction list of an interval i is the set of intervals at the
same depth in the tree which are in the far field of i and which are not in the far field of the
parent of ;.

3.2.1. Far-field expansions. The original FMM [6] relies on the fact that the electrostatic
potential due to a set of charges can be represented to high precision, at points distant from
those charges, by a multipole expansion of relatively few terms. In the generalized FMM
described in this paper, the output (no longer necessarily the electrostatic potential, although
we will continue to use the terms “potential” and “charge™ for convenience) does not need to
be describable by a multipole expansion. but can be describable by an arbitrary expansion.
provided that the expansion coefficients are linear functions of the charge magnitudes
and that the potential is a linear function of the expansion coefficients. The creation and
evaluation matrices for this expansion. which we will call a far-field expansion. do not need
to be furnished as such by the user: they are computed from the matrix P using the singular
value decomposition. This computation is performed for each interval i for which a far-field
expansion is needed and is as follows: Let n; x m; be the dimensions of the matrix Pr, ;.
let the singular value decomposition of P, ; be denoted by USV". the number of singular
values by p, and the singular values by 5; > 52> ... > 55 Let p; be the minimum integer
such that

ﬁ a2 Il 7’7im[
Y os< == (12)
+1

L nm
J=pe

Let the m; x p; matrix V; consist of the first p; columns of V and let the pi X n; matrix
E; consist of the first p; columns of the product U S. We will refer to V;* as the far-field
expansion creation matrix for interval i and to E; as the far-field evaluation matrix; the latter
is not used explicitly in the algorithm.

As shown in [8], the product E; V;* is, among matrices of rank p;, the closest approxima-
tion to the matrix P, ; in the norm (2). Thus the number of terms in any known expansion
for Pr, ; (such as a multipole expansion) is an upper bound for the number of terms pi in
the far-field expansion of the same accuracy computed as above.

3.2.2. Local expansions. Using far-field expansions alone. an O (n - log n) version of
the FMM can be produced (for an overview of the various versions see [7D. The O(n)
version of the FMM requires additional numerical machinery, namely local expansions.
which approximate the potential on a region due to charges on distant regions. In the original
FMM. local expansions were harmonic expansions: in the generalized FMM. creation and
evaluation matrices for local expansions are computed from the matrix P using the singular
value decomposition. as follows. Let n] x m| be the dimensions of the matrix Pi r,; let the
singular value decomposition of P; r, be denoted by U SV", the number of singular values

by 7. and the singular values by s; > 55 > --. >s;. Let »; be the minimum integer such that
d nm,
2 2 RRATLUN
> st pp (13)
X nm
j=r+1

Let the m; x r; matrix U; consist of the first r; columns of UU. We will refer to U; as the
local expansion evaluation matrix for interval .



GENERALIZED 1D FMM AND SPHERICAL FILTER 599

3.2.3. Far-field translation marrices. The FMM does not compute far-field expansions
for intervals at high levels in the tree directly from the charges in the interval. but rather
computes them from far-field expansions at lower levels. Associated with each interval i
whose parent interval j has a far-field expansion is a translation matrix 7, which takes as
input a far-field expansion for i and produces as output a far-field expansion for J which
evaluates to the same potential. Let V™ be the far-field creation matrix for interval /. and
let V7, be the far field creation matrix for interval j. with columns deleted such that it
only accepts input from the interval 7. Clearly the translation matrix 7; should be such that
for any m;-vector g. the vector T,V,"q is as close as possible. by some measure. to the
vector V;g. The measure we use is the least squares measure: in particular. 7; is chosen
SO as to minimize the quantity || V> —T;V/*|l. The formula for such minimization is given
by Lemma 2.2: using the fact that the singular value decomposition of any matrix with
orthogonal columns consists of that matrix multiplied by two identity matrices. it reduces
in this case to

T,=V,V. (14

We will refer to T; as the far-field expansion translation matrix for interval .

Lemma 2.4 gives a bound for the error associated with using the translation matrix 7;.
Suppose E ; and E; ; are matrices which take as input the far-field expansions on interval j
and on interval /. respectively, and use them to evaluate the potential on some other interval
k and are such that

1Pk —E;jxViill < e (15)
1Py — Ei V|l < éea. (16)

Using (15). (16). and Lemma 2.4. we get that
WPk — Ejx TV < &) + ea. (17

3.2.4. Local expansion translation matrices. The FMM does not evaluate local expan-
sion for intervals at high levels in the tree directly at each of the points at which the potential
is to be evaluated. but rather transforms them into local expansions for intervals at lower
levels. Associated with each interval i, whose parent interval j has a local expansion, is a
translation matrix M; which takes as input a local expansion on J and produces as output a
local expansion on i. M; is computed as follows. Let U; be the local expansion evaluation
matrix for interval 7, and let U} ; be the local expansion evaluation matrix for interval Js
with rows deleted so that it only produces output on the interval i. Clearly the translation
matrix M; should be such that for any r;-vector «, the vector Ui M, is as close as possible,
by some measure, to the vector U j.ie. The measure we use is the least squares measure: in
particular, M; is chosen so as to minimize the quantity ||U; ; — U; M;||. The formula for such
minimization is given by Lemma 2.2. Using the fact that the singular value decomposition
of any matrix with orthogonal columns consists of that matrix multiplied by two identity
matrices, it reduces in this case to

M; =UUj;. (18)

1
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The error incurred by using A, is bounded by Lemma 2.4: the analvsis is almost identical
to that presented in Section 3.2.3 for the far-field translation matrix T, and is omitted. We
will refer to M; as the local expansion translation matrix for interval ;.

3.2.5. Far-field 1o local interaction marrices. A far-field to local interaction matrix E..
takes as input a far-field expansion on an interval i and produces as output a local expansion
on another interval j. Such matrices are constructed only for pairs of intervals (i. j) such
that j is in the interaction list of /. The matrix E;; should be such that for all n, -vectors q
the product U; E; ; V"¢ is as close as possible. by some measure. to the product P;,q. We
choose E;; so as to minimize the quantity

e =NUE V=Pl (19

The formula for such minimization is given by Lemma 2.2: using the fact that the sin-
gular value decomposition of any matrix with orthogonal columns consists of that matrix
multiplied by two identity matrices. it reduces in this case to

Ej.l = U;'(P_z.i Vi. (20

Lemma 2.3. combined with (12) and (13). gives a bound for £t

[y i,

£ <ellP] \W'w‘ (21

nm

We will refer to £ ; as the far field to local interaction matrix from interval 7 to interval J.

Remark 3.1. A brief inspection of the above formulae for the creation. translation.
and evaluation matrices {U;}. {V;}. {T;}. {M;)}. and {E;;} shows that the same matrices
are generated. in different roles. if the input matrix to the algorithm is the adjoint P~ of
P. provided that the hierarchical subdivision is retained: the far field expansion creation
matrices for P are identical to the local expansion evaluation matrices for P*. and vice
versa: the far field translation matrices for P are identical to the local expansion translation
matrices for P*, and vice versa: and the far field to local matrices for P are the adjoints of
the far field to local matrices for P*. Thus the matrices precomputed for P can also be used
for multiplying by P~.

3.2.6. Execution time. The FMM performs one matrix—vector multiplication for each
instance of the matrices {U;}. {V;}. {T;}. {M;). and {E; ;}. Thus the CPU time which it con-
sumes is proportional to the total number of elements in all instances of the matrices. The
sizes of the matrices depend on the numerical ranks pi and r;, as defined by (12) and (13).
We analyze the execution time further only in the case that all those ranks are all bounded
by some number r. In that case, the computation of far-field expansions from the input takes
O (mr) time. the computation of the output from local expansions takes O (nr) time, and the
computations of expansions from other expansions take O (kr?) time. where k is the total
number of intervals produced by the subdivision process. Assuming that m is proportional to
n. the total execution time is O (nr + kr?). The quantity nr 4+ kr* is minimized (with respect
tok)whenn/kisequaltor. Since n/k is proportional to the size of the lowest-level intervals.
the minimum execution time occurs when the size of the lowest-level intervals is propor-
tional to r. with the constant of proportion depending on the details of the computer involved.
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4. TECHNICAL IMPROVEMENTS

4.1. Diagonalization of Far Field to Local Matrices

A certain amount of freedom is present in the definition of far field and local expansions:
the results of the FMM are clearly unaffected if the far-field expansion creation matrix ¥
for an interval i is multiplied on the left by any orthogonal matrix W its far field translation
matrix T; is multiplied on the right by W*. and its far field to local matrices E;,forall j are
multiplied on the right by W=. Similarly. the results of the FMM are unaffected if the local
expansion evaluation matrix U; for an interval i is multiplied on the right by any orthogonal
matrix W. its local expansion translation matrix M; is multiplied on the left by W=_and its
far field to local matrices E, ; for all j are multiplied on the left by W=,

We use this freedom to diagonalize one of the (usually three) far field to local matrices for
each interval. Suppose that E; ; for some intervals i and j is the matrix to be diagonalized.
Let its singular value decomposition be denoted by E; ; = USV*. Then we multiply V> on
the right by V*. and multiply U; on the left by U. also changing translation matrices and
far field to local matrices as indicated in the previous paragraph so that the results of the
FMM are unaffected.

Far field to local matrices are chosen for diagonalization in such a way that each expansion
redefined by this process is redefined only once. The scheme used is as follows: each level of
Intervals is divided into blocks of four adjacent intervals: inside each block the interactions
chosen for diagonalization are: 1 — 3.2 — 4.3 — 1. and 4 — 2 (as depicted in Fig. ).

4.2. Splits by Factors Other Than Two

Another modification which was made to the above FMM is to split intervals into more
than two pieces. This clearly can be done to any interval, at any level in the tree. However.
the only use which was made of this flexibility was to alter the top of the tree of intervals
slightly, so as to control better the size of the lowest-level intervals in the tree. The top
interval was split either into two, three, or five pieces: if three, its subintervals might each

FIG. 1. Far field to local operators which are diagonalized.
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TABLE1
Double Precision Timings for the 1/x Kernel

Times (seconds) Memory

Error Ratio (REAL=*8

N (L* norm) Init Eval Direct eval/FFT spaces)
64 0.35477E-15 0.070 0.001 0.001 5.21 3852
128 0.92042E-15 0.820 0.003 0.005 7.31 10407
256 0.23512E-14 6.620 0.007 0.019 8.93 26205
512 0.16144E-13 39.700 0.013 0.073 5.60 52263
1024 0.21925E-13 214710 0.031 0.730 4.16 117881

be split into three parts. the remaining intervals in the tree all being split into two parts. This
permits a choice of the size of the lowest-level intervals not only of 11/2* for any k. but also
of n/(3 x 2%), n/(5 x 2y, or n/(9 x 2%).

5. NUMERICAL RESULTS

For comparison against the older one-dimensional FMMs of [3. 15], the generalized
FMM was applied to the 1/x kernel: that is. the input matrix P = [pi;] was given by (1).
Timings for various numbers of points 7 are listed in Tables I and II for double and single
precision (that is, with the parameter ¢ set to 107!* and 10~7). In all cases. the parameter
m was set to be equal to n. the nodes {x;} were identical to the nodes {y;}. being slightly
perturbed equispaced nodes. All timings were performed on a Sun Sparcstation 10 in double
precision (Fortran REAL*8) arithmetic. Also included in the tables are ratios of the execution
time of the algorithm to the execution time of a standard SLATEC FFT of size n.

From the timings. it can be seen that the generalized FMM is similar in execution speed
to the best previous 1D FMM (that of [15]) known to the authors. It is, however. far inferior
to the FMMs of 3. 15] in the time spent in the precomputation stage; initialization times
for those algorithms did not exceed execution time by more than a factor of 10, whereas the
initialization time for the generalized FMM exceeds the execution time by factors of 1000s.
Effectively. it limits the usefulness of the procedure of this paper to problems of sufficient
importance that the initialization data can be precomputed and stored. The following section
discusses one such case.

TABLE II
Single Precision Timings for the 1/x Kernel

Times (seconds) Memory

Error Ratio (REAL*8

N (L* norm) Init Eval Direct eval/FFT spaces)
64 0.25040E-08 0.040 0.001 0.001 4.74 3500
128 0.23352E-07 0.440 0.002 0.005 5.90 8465
256 0.19125E-06 3.580 0.005 0.018 6.13 17803
512 0.64886E-06 22710 0.010 0.074 4.03 36911

1024 0.28910E-06 124.690 0.021 0.590 277 79407
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6. APPLICATION TO FILTERING

This section describes a use of the generalized FMM. in an algorithm recently pub-
lished by Jakob-Chien and Alpert [10] for uniform resolution filtering of functions on the
sphere. Their algorithm as a whole performs the following task: given numbers f(¢;. f;).
i=1..... Inj=1..... J. such that

K n
@ 6)=>"3" frym(g,.6). (22)

n=0 m=—n

computes numbers f(¢;. §;) such that

N n
F@ 6= fryr@,.6,. (23)
n=0m=—n
where the functions ¥ are the surface harmonics and where {¢;}, {6}, {#;}.and {§ j}are
appropriately chosen grid points (see [10] for details).
We modify only the core of the algorithm of [10], which performs the following one-

dimensional filtering operation: given numbers f™(8,). ..., f™(6;) such that
J-1
rey=) fTPTw), i=1....J, (24)
j=m
compute numbers /" (d,). . ... F™(x) such that
N
Fm@n=>"frPm@). i=1.....N. (25)
j=m

where the functions PZ’ are the normalized associated Legendre functions, u; = sin #; and

d; = siné;.
Due to the orthonormality of the functions P™ for fixed m and integer n > m, if the nodes

M1, ..., py are Legendre nodes (nodes of the Gaussian quadrature corresponding to the
weight function w(x) = 1; see, for instance, [14]), then the coefficients £, fir ..., fu
are given by
J
V= MNP (u)wy, (26)
j=1
where wy, ..., w; € R are the Gaussian weights corresponding to the nodes iy ooo, Wy,

Combining (25) and (26) yields an equation for the entire filtering operation:

7 N
Fr@y =3 fr@ow Y Pm(uo) BT (i) @7)
k=l j=m
Equation (27) constitutes a linear transformation from e, ..., "6t @), ...,

F™(@x); we will refer to the matrix of this transformation as the filtering matrix and will
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denote itby P. Using the Christoffel-Darboux formula for the associated Legendre functions
(see. for instance. [1. Section 8.9.1]). which is

= Y PIP G = e (P (PTG — PGP ). (28)

e =\t —m/dn? = 1), 29

the filtering operation can be written as

- - J = J 5

o) 5, O wi P 5, frOw, PR ()
=P Y Py Y Y
EN41 S iz Hj = Hi Y =1 Hj— Hi

From (30) it immediately can be seen that the filtering matrix consists of the sum of two
matrices of the form (1). each multiplied on the left and the right by a diagonal matrix.
Thus. the filter can be implemented using two calls to an FMM for the 1/x kernel: this is
the method presented in [10] (from where the above analysis is copied). It also follows that.
if the generalized FMM of this paper is applied to the filtering matrix. the numerical ranks
{ri} and {p;} (see (13) and (12)) are no more than twice the corresponding ranks when the
generalized FMM is applied to a matrix of the form (1). Thus. the filter can be implemented
efficiently via a single call to the generalized FMM.

Remark 6.1. If N is larger than J. the operation (30) amounts to interpolation rather
than filtering. If the output nodes {71, } are the Legendre nodes of order N. then the filtering
matrix from J nodes to N nodes is. except for the multiplication of the input by Gaussian
weights. the adjoint of the interpolation matrix from N nodes to J nodes: this can easily be
seen by inspection of (30). Thus. the matrices {U;}. {V;}. {T;}. {M,). and {E;}, precomputed
for the purpose of filtering. can also be used for interpolation (see Remark 3.1).

6.1. General Nodes

If the nodes u;. . ... #y are not Legendre nodes. then the coefficients £, .. .. S cannot
be computed by direct use of the formula (26). In this case. two methods of performing the
filtering operation are available. First. Eq. (24) can be solved for the coefficients A T
Alternatively. the function can be interpolated onto Legendre nodes. following which the
filtering matrix for Legendre nodes (30) can be used. We use the second method to show
that the filtering matrix for general nodes can be compressed by the generalized FMM: we
used the first method in our implementation.

As is well known (see. for instance. [1]), each of the associated Legendre functions Py
is either a polynomial or a polynomial multiplied by +/1 — x-. depending on whether m
is even or odd. Thus the interpolation onto Legendre nodes is a polynomial interpolation.
which. if m is odd. is preceded by a division by v/1 — x2 and followed by a multiplication by
V1 — x?. As shown in [3]. polynomial interpolation can be performed in O(n) time using
an FMM. The filtering matrix for general nodes is the product of the interpolation matrix
and the filtering matrix for Legendre nodes: since each of these can be compressed by a
generalized FMM. their product also can be compressed by a generalized FMM (see 2h.
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Remark 6.2. In the solution of Eq. (24) for the coefficients f"..... S when m > 0.
there are more equations than unknowns. The definition of the problem is such that there is
an exact solution: however. numerically. this issue was dealt with by solving the equation
in the least squares sense.

6.2. Optimizations

The above filtering algorithm admits several optimizations. We describe them only for
the case when the nodes ;. .... u are Legendre nodes: however. all of them have also
been implemented in the case of general nodes.

First. when m is close to N. the number of coefficients f}" to be extracted is small: thus
direct computation of (26) followed by (25) is the most efficient algorithm for the filter.

Second. portions of the filtering matrix have negligible norm and can be discarded. This
can be easily seen by examination of (30). using the fact that the functions P)" take on
small values near the endpoints of the interval [—1. 1]. The fraction of the matrix which
can be discarded increases with increasing m. to as much as eight ninths. This optimization
is clearly not specific to the generalized FMM: it can be applied equally well to the direct
method or to the unaltered algorithm of [10] and was applied to the direct method code
which was used in the timings presented below.

Third. the filter can be speeded up slightly by splitting the input function into odd and
even parts. and filtering them separately. Each of the associated Legendre functions P is
either odd or even. with functions of successive degree n being alternately odd and then
even. Thus the filter. applied to an odd function. yields an odd function and. applied to
an even function. yields an even function. This implies that the filtering matrix is block-
diagonalized (into two blocks) by the separation of odd functions from even functions. We
address only the case in which the separation can be done trivially. that is. when each of
the sets of nodes {u;} and {f1,} is symmetric around zero: for brevity of explanation. we
further assume that N and J are even. In this case the separation of odd functions from even
functions is accomplished by the usual formulae

foaa(x) = (f(x) = f(=x))/2. (31
Jeven(X) = (f(x) + f(=x))/2. (32)

where. as usual. each of the functions fy4q and feven are symmetric around zero and. thus,
need only be stored at half the nodes. It is easily shown. using (30) and (31), that in the
case that the nodes u;..... u; are Legendre nodes, each block P= [Hi;] of the block-
diagonalized filtering matrix is given by

P, (L) PRy — PR ) PR ()

ij = -

Hj— M

N P () PR w; + PRGE) PR L (i) w
ﬂj + Ui

(33)

where, for the block which filters even functions, the “#" sign is an addition, and, for the
block which filters odd functions. it is a subtraction. An inspection of (33) immediately
shows that each block is compressible by a generalized FMM.
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Remark 6.3.  Experimentally, the ranks produced by the generalized FMM when applied
to the block-diagonalized matrix are almost identical to the ranks produced when applied
to the original filtering matrix. except near the point u = 0. where the ranks are slightly
smaller in the block-diagonalized version.

Remark 6.4.  Since the generalized FMM is, when applied to matrices of this form. an
O (n) procedure. splitting the problem into two problems of half the size does not produce
any asymptotic improvement in execution time, although it does produce an improvement
for small to medium-sized n. By contrast. applying this optimization to the direct method
(as was done in the code used in the timings presented below) reduces the execution time
by a factor of 2 asymptotically. since the direct method is O (n?).

6.3. Numerical Results

Table I1I contains experimental results for the filter for functions tabulated at Legendre
nodes. The filter was run for several values of J, with N = J/2 and foreachm =1. . . . . N:
the average initialization and execution times. the average L- error. and the average amount
of memory used for precomputed data (for all values of m) are tabulated. The quantity
labeled as initialization time is. as before, the amount of time taken to compute the matrices
which comprise the generalized FMM: this task only needs to be performed once for any
combination of J and N. since the precomputed matrices can be stored. All figures were
produced by an implementation in double precision (Fortran REAL*8) arithmetic on a Sun
Sparcstation 10. The table also contains the amount of time taken by the direct method and
the ratio of the execution time of the FMM-based filter to the execution time of a standard

TABLE III
Filter Timings for Points Tabulated at Legendre Nodes

Average time per m (seconds) for Average memory
Ratio: Average used
J Direct FMM eval FMM init eval/FFT error (L7) (REAL=*8 spaces)

Requested accuracy 107}

64 0.00014 0.00021 0.038 1.10 0.87216E-04 637

128 0.00059 0.00063 0.173 1.73 0.21141E-03 1814

256 0.00239 0.00172 0.861 2.25 0.35270E-03 4684

512 0.00916 0.00406 4528 1.64 0.55393E-03 10586

1024 0.15601 0.00930 22.708 1.26 0.72021E-03 22799
Requested accuracy 1077

64 0.00016 0.00020 0.035 1.05 0.62995E-09 715

128 0.00069 0.00068 0.145 1.84 0.89805E-08 2351

256 0.00272 0.00199 0.749 2.61 0.20946E-07 7074

512 0.01015 0.00545 +4.480 2.21 0.35158E-07 18763

1024 0.17623 0.01351 25.102 1.84 0.50011E-07 45001
Requested accuracy 1072

64 0.00017 0.00018 0.035 0.97 0.64733E-13 712

128 0.00078 0.00070 0.118 1.88 0.36187E-12 2604

256 0.00312 0.00221 0.630 2.90 0.13528E-12 8496

512 0.01102 0.00656 3.752 2.64 0.30608E-12 26072

1024 0.19227 0.01763 26.347 237 0.14238E-11 66714
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SLATEC FFT of size J. The direct method for which timings are listed is a modestly
optimized variant: the filtering matrix it used was precomputed: certain optimizations used
for the FMM-based method were also applied to it. as described in Section 6.2.

The filter was also implemented for functions tabulated at general nodes (Section 6.1)
and was tested on Chebyshev nodes. The timings are almost identical. with the only major
difference being that considerably more time was required to compute the filtering matrix:
they are omitted.

Remark 6.5. The implausibly large CPU times taken by the direct method for J = 1024
are the result of the problem size exceeding the size of the cache: on the machine on which
timings were run. only two double precision vectors of length 1024 fit in the data cache.
Such a jump in timings is not expected to occur on most machines and. in any case. could
be eliminated by use of a blocked matrix—vector multiplication routine.

Figure 2 is a graph of the average numerical rank of interaction found by the filter for
Legendre nodes (the average of the ranks { p; }), plotted as a function of m. for J = 1024 and
£ =107"2. (The ranks for the filter for arbitrary nodes. when applied to Chebyshev nodes.

18 | R
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0 100 200 300 400 500

FIG. 2. Average numerical rank of interaction. as a function of m. for J = 1024 and & = 10~">. The dashed
line is the theoretical bound on the rank.
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were nearly identical.) Also plotted in Fig. 2 is the theoretical upper bound for the average
rank. that is. twice the average rank of an FMM for the 1/x kernel of the same accuracy.
Since most of the ranks were close to their average. the execution time of the FMM is
roughly proportional to the average rank. (See Section 3.2.6 for an analysis of the case of
all ranks being equal: a similar analysis applies to other variants of the 1D FMM.) Thus.
Fig. 2 provides a rough indication of the amount of speedup that is obtained by switching
from the scheme of [10] to the generalized FMM: to a first approximation. if the average
rank were equal to its upper bound for all m. the two schemes would be of equal speed:
to the extent that it is lower. the generalized FMM is faster. (However. it should be noted
that the generalized FMM requires more precomputed data and is. thus. more vulnerable to
caching effects.)

7. GENERALIZATIONS

In this paper. we have presented a scheme for the efficient filtering of functions on the
two-dimensional sphere. The approach is based on two observations. The first observation
is that in the fast multipole method (see. for example. [3. 6]) potential kernels can be
replaced with functions from a much more general class. using the standard singular value
decomposition. and that this yields a fairly efficient implementation. The second observation
is that the Christoffel-Darboux formula (28) provides a straightforward proof that the
filtering operator on the sphere (27) can be compressed by FMM-type techniques. Both
observations admit far-reaching generalizations. outlined below.

L. The fast multipole method used in this paper is a special case of an extremely general
procedure. Particular versions of this procedure have been used repeatedly (see [11. 12]):
it is effective in all situations when the operator can be compressed by wavelet techniques.
The following is a brief outline of the approach.

Given a matrix to be rapidly applied to arbitrary vectors. examine it (either analytically
or numerically). identifying large submatrices that are of low rank. When the coefficients of
a submatrix are a sufficiently smooth function of its indices. such a submatrix is guaranteed
to have a low rank (this is the environment where wavelets and wavelet-type techniques
can be used): another frequently encountered situation involves submatrices that are not
smooth. but are smooth matrices multiplied by diagonal matrices from the left and/or
from the right (as in the case of the filtering operator (30)). Any matrix whose rank is
much lower than its dimensionality is “compressed™ by its singular value decomposition:
applying this procedure to a sufficiently large collection of submatrices of some matrix. we
obtain a primitive “fast™ algorithm for applying it to arbitrary vectors. The scheme is further
accelerated by recursive application of this approach.

A strong argument can be made that the SVD of a matrix is its “optimal™ low-rank
representation: in this sense. SVD-based implementations of FMM-type algorithms are
“optimal.” Indeed. schemes have been constructed using the SVD to further compress
multipole expansions (see. for example. [3. 9]): the resulting procedures tend to be more
efficient than the original FMM. In addition. the FMM for potential kernels has been ac-
celerated (dramatically so. in higher dimensions) by using diagonal forms of translation
operators (see [7. 15]). Possible hybrid algorithms combining the latter with SVD-based
compression of more general kernels are currently under investigation in one. two. and three
dimensions.



GENERALIZED 1D FMM AND SPHERICAL FILTER 609

2. Formula (28) in the present paper is a special case of the well-known Christoffel-
Darboux formula,

Z Pk(X) . pl\(_‘) — qn . pn+1(X) . pn(\) - pn+l(.\') . pn(X)‘ (34)

k=0 n+l X =Y

where p; are polynomials orthogonal with some weight function w on some interval. Gk
is the coefficient at the term x* in the polynomial p;. and # is an arbitrary positive in-
teger (see, for example. {5, Section 8.902]). It is immediately clear from (34) that the
algorithm of this paper can be used to evaluate rapidly the projections in spaces of poly-
nomials on subspaces consisting of polynomials of reduced rank, in the norm associated
with the weight w. There are a number of other projections that can be evaluated rapidly
using the FMM scheme of this paper, or its variants. The operators we have experimented
with include projections on subspaces in the space of polynomials in two dimensions.
projections on subspaces spanned by appropriately chosen Bessel functions. and several
others. In some cases, we have determined experimentally that the scheme works. but have
not constructed the underlying mathematics. This whole class of issues is currently under
investigation.
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Abstract. In the first part of the paper we present an implementation of Milder's operator
expansion formalism for acoustic scattering from a rough non-periodic surface. Our main
contribution to the forward-field calculation is the development of two accurate ways of computing
the order-zero normal differentiation operator Ny. The accuracy of our implementation is tested
numerically. In the second part of our paper we apply this approach, combined with a continuation
method. to an inverse scattering problem. The resulting scheme performs significantly better than
the classical first-order methods.

1. Introduction

Scattering theory has been an active area of research for several decades. Several related
problems belong to this field: acoustic and electromagnetic scattering form two large classes,
which are further subdivided by assumptions on the underlying media and on the boundary
conditions.

In direct problems one wants to calculate the field scattered by a given object. In two
common situations, one knows either the values of the field on the scatterer (the Dirichlet
problem), or the values of the normal derivative of the field on the boundary (the Neumann
problem). Direct problems are usually well posed.

Inverse problems involve reconstructing the shape of a scatterer from the scattered field.
These problems are ill posed: the solution has an unstable dependence on the input data.

For the convenience of the reader, we shall outline the progress made in acoustic scattering
in a homogeneous medium from a sound-soft obstacle. A thorough discussion of this and
related problems can be found in the references listed in the bibliography. The list of references
is meant to be representative, rather than comprehensive.

The sound-soft scattering problem is characterized by the condition that the total field
vanishes on the boundary of the scatterer. Thus, acoustic scattering is equivalent to the
Dirichlet boundary value problem for the Helmholtz operator, with the scattered field equal
to the negative of the known incident field. This problem is frequently solved by methods
of potential theory. The single- and double-layer potentials relate a charge density on the
boundary of the scatterer to the limiting values of the field and its normal derivative. The
resulting integral equation is then solved in an appropriate function space, a common choice -
being the Lebesgue space L°.
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If the boundary is sufficiently smooth (C2. for example) the method of layer potentials falls
within the scope of Fredhoim theory. (see [3]). When the boundary is merely Lipschitz. the
Dirichiet problem becomes much more difficult and was first studied for the Laplace operator.
corresponding 1o a zero wavenumber. The boundedness of the double-laver potential as an
operator on L- is a deep result in real-variable theory, proved in [1] for arbitrary Lipschitz
consiants (see alse [2] for a survey of related topics). Invertibility of the double-layer potential
in L7 was first proved in [17}. and extended to other L” spaces in [6]. A thorough description
of related research. together with an extensive bibliography, 1s given in [9]. Extensions to
non-zero wavenurbers and higher dimensions are obtained and described in [7.11.14.13].
( [14] has an extensive bibliography).

For the direct problem. a straightforward numerica solution of the integral equations for
ihe scatterad field leads to an O(n?) algorithm.

For the inverse problem. numerical methods must cope with the problem's inherent ill
possdness. Some cormmonly used approaches require that the scattered field can be analytically
continued across the boundary of the scatierer, which makes the problem even more unstable.
References {4. 10] contain detatied descriptions of these methods and discuss the difficulties
associated with them.

In this paper, we consider both the direct and inverse problems of acoustic scattering
In & homogenaous medium. Feilowing Milder {12, 13}, we start from the boundary integrul
equation formulation and expaad the scattering amplitude in a series of readily computable
terms. The principal wol in this formalism is the admittance operator relating the scattered
tield and its normal derivative at the scattering surface. See [18] for a thorough discussion of
the operarer expansion meihod and other issues in rough surface scattering.

W2 adapt Milder's theory to fast numerical evaluation of the field scattered from rough
{Lipschitz) surfaces with compact support. Other authors, see [8]. have already reported
numerical implementations of Milder’s theory. Our cortribution, in the case of forward-
scatiering computations. is to implement Ng (the order-zero normal differentiation operator)
accurately, for the case of a compact boundary. We resolve the problems caused by the
singularity of the symbol of Ny as a pseudo-differential operator and that of the associated
integral kernel. We also implement N,. In two dimensions. the results of our implementations
are compared with the exact solution obtained by classical integral-equation methods. We have
validated our method numerically for boundaries with Lipschitz constant less than %. In the
sacond part of the paper, we approximate N, the inversion-symmetric form of the admittance
operator. by Ny in the forward-field equation and invert the resulting expression to solve an
inverse scattering problem in the far-field regime. We use a continuation method with respect
to the freqguency: at each step we apply Newton's method with the starting point given by the
cutput from the previous step. Thus at each stage we create an approximation to the curve
filtered at a higher frequency. Our method recovers some nonlinear effects not accounted for
by the classical Fourier inversion method, and works well in some situations where the linear
term approximation fails completely.

The paper is organized as follows. Section 2 introduces the notation used in the paper.
Section 3 contains a detailed description of Milder’s formalism, as well as the algebraic
transiormations to ensure that the relevant operators always act on functions of compact
support. Then we describe two implementations of the operator Ny and compare them. The
section concludes with numerical results for the forward-field computations. We consider an
inverse scattering probiem in section 4 and discuss our continuation method for solving it. This
section also includes some numerical experiments in surface reconstruction. We conclude with
& summary in section 3.
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2. Notation and definitions

We shall associate with the vector X = (x;.x2.x3) € R, the vector X = (x.x2. —x3). x
without subscripts will denote a vector in R- and we sha!! sometimes write X as (x. x3). Our
scattering surface is denoted by I and is given by the graph of a v...ipactly supported Lipschitz
function ¢ : R*> — R. The points on the surface are thus of the form (x. {(x)). The free- -space
Green’s function G(X, Y) for the wavenumber k is given by the formula
_ Lexp[ile -Y ,
XD = T X =T M

for X #£7Y.

We shall frequently denote G(X, Y) by Gx(Y). We shall also use the following expression
for G:

G((x, 2), (x0, z0)) = g(}(x, 2) — (x0, 20)|) (2)

where (x, z) # (xg, o) and
lkr

1
(r)—-—

4 r
Functions satisfying the Helmholtz equation will be called metaharmonic.

3. Computation of the scattered field

We consider the Dirichlet problem for acoustic scattering from a compactly supported
perturbation of the plane. In subsection 3.1, we describe Milder’s operator expansion
formalism. We also discuss a modification we make to ensure that all integrations are
performed over compact regions. The next two subsections (3.2 and 3.3) form the main
part of our contribution to the forward-scattering computations: two implementations of the
order-zero normal differentiation operator Ny. Because of the central role Ny plays in the
expansion formalism, we feel it is of interest to describe different ways of implementing it.
In subsection 3.4, we compare the two methods. The last subsection (3.5) presents some
numerical examples of computations of the scattered field.

3.1. The operator expansion formalism

The surface I" of the scatterer is given by the graph of a compactly supported Lipschitz function
¢ : R? — R. We consider the Dirichlet problem for the Helmholtz equation, i.e. we wish to
solve

(A +E*) Py =0 @
in the regior. lying above T, with the sound-soft boundary condition
Pscarlr = = ®inclr (&)

where ®;; is the (known) incoming wave and ®..,, is the scattered wave.

Following Milder, see [12, 13], we begin with the Green—Helmholtz integral for the
scattered field:

3G cbscat
¢scat(R)=/r<7n£(X)d’sca:(X)— (X)GR(X)> ds(X) (6)

where the free-space Green'’s function is defined by
explik]X — R|(]

Gr(X) =
R(X) 47|X — R|

)
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Milder has modified this formula to obtain

Pa(R) = 2/ Gr¥. CONN DV dy (8)
where N has a formal operator power series expansion in {. Only even powers of ¢ occur in
the expansion, and N can be written as a series of operators

<
]\’S=ZN3]'=N0+N2+"‘. (9)
Jj=0
Already, the first two terms of this expansion provide an order-four approximation to the
scattered potential, which surpasses the classical ones of Bragg or Kirchhoff (see [12]). The
expressions for the operators Ny and N, are given by the following formulae:

Nof = (VK =T f(m)” (10)

Naf = —=3Nolg, [2. NolINo f (11
where

[, Nolg = ¢(Nog) — No(Lg) (12)

f is the Fourier transform and f is the inverse Fourier transform of f.

Higher-order terms have simple expressions in terms of higher-order commutators,
although their implementation gradually becomes more difficult.

Alternatively, Ny can be viewed as a convolution operator with kernel K (x, y) given by

_,80x — D)

K(x,y) = =

(13)
where
1 eikr
r)y=— .
8( ar r
Note. that the kernel K (x, y) is singular and is not a rapidly decaying function of |x — y|. Any
accurate numerical implementation has to overcome these problems.

In our experiments the incident field originates at a point source located at S, so that
Pinc(Y) = G5(Y). (15)

We calculate the scattered field .., (R) using Ny or Ny + N, instead of N,. The resulting
approximations are correct through second and fourth order in ¢, respectively. However, one
cannot use formula (8) directly, since the functions No®inc, (No + N2)Pipe and G(y, '463))
are supported on the whole plane. Therefore, we modify formula (8) so that all non-local
operators are applied to compactly supported functions and the final integration is performed
on acompact set. First. since G§(y) is metaharmonic above the boundary, (8) applied to Gs(y)
gives:

(14)

Gs(R) = —Z/Gn(y,f()'))NsGs(y)dy (16)
where S is the reflection of S across the XY-plane. Combining (15), (16) with (8), we obtain

Guea (R) = —G5(R) +2 / Gr(y. L(3)Ni(Gs — G3)(y) dy. (17)

Note that the difference G5 — G 5 vanishes outside the support of ¢.
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Even though G5 — G is compactly supported. N(Gs — G). in general. is not. We shall
now describe the additional modifications that are made to (17) after N, is replaced by No. to
ensure integration over a compact set. Defining

2 (R)=—G3(R) + 2/ Gr(>».L(3))No(Gs — G5)(y)dy (18)
we have |

% (R) = —G5(R) +2 / Gr(y.0)No(Gs — G3)(x) dy

+2 /(GR(_\'. £ = Gr(y. 0))No(Gs — G5)(») dy. (19)
Since Ny is a symmetric operator, and
0G;
NoGr(y) = NoGg(») = —=£(3,0) (20)
ya

we immediately obtain
0 3G
Py (R) = —G5(R) +2 a—n()', 0)(Gs — Gg)(y)dy

+2/(GR(_\', £()) = Gr(y, 0)No(Gs — G3)(y) dy. (21)

Since both Gr(y.¢(¥)) — Gr(y,0) and 3G;/dy; are compactly supported, we see that
the evaluation of ®%_(R) can be reduced to evaluation of inner products of the form
(Nof.8) = [ Nof(y)g(y)dy, where both f and g are compactly supported.

The operator N, requires several similar decompositions starting from (17). We omit the

details.

3.2. Implementation of the operator Ny

As shown in the previous subsection, computation of the approximate scattered field can be
reduced to evaluation of inner products of the form (N, f, g), where both £ and g are compactly
supported.

A straightforward numerical implementation of Ny would consist of approximating the
Fourier integral by a DFT, multiplying by the symbol of Ny, and then applying an approximate
inverse Fourier transform via another DFT. However, the symbol of Nj as a pseudo-differential
operator, iy/k2 — |n2|, is not differentiable on the circle [n| = k. Therefore, this direct approach
would result in a low-order integration scheme and require a very fine uniform discretization
in frequency to give accurate results.

In this subsection, we demonstrate one way of resolving this problem. Our approach can
be applied to compute other Fourier integral operators with singular kernels. In our numerical
experiments, we approximate Lipschitz curves and surfaces by smooth functions. Thus the
function f (and g) is smooth in addition to being compactly supported. Therefore, the function
f 1s numerically compactly supported and integrations involving products of f are effectively
on compact subsets of the frequency space.

Our method of computing (N f, g) involves expressing Ny as a sum of two operators, Tj
and T3, with the following properties:

e the symbol of T; is continuously differentiable to a prescribed order, and
¢ 7> 1s a convolution with a smooth function.
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We evaluate T using the FFT on the frequency side. Since the symbol of T} is several
times differentiable, it can be sampled relatively coarsely and still yield a good approximation.

The convolution with the smooth kernel of 7 can be implemented efficiently by an FFT.
where this time the FFT is not viewed as a discretization of the continuous Fourier transform.
as it was when evaluating T, but as an algebraic operation which diagonalizes the discrete
convolution. (Np f, g) is then evaluated by integration over the compact support of g.

We shall exhibit the decomposition of Ny in three dimensions. the result being valid in
two dimensions with only minor modifications.

We note (see [13]), that

Nof(x) =

: ixen £
3n)? /R: 1g(me™™ f(m) dn (22)

where g(n) = /k? — |n|? is chosen to have a positive imaginary part when |5|> > k2.
We fix a positive integer m and a positive real x3. We decompose N f into two terms:

Nof(x) =T, f(x) + To f (x)

1 . N
= 2n)e /ﬂ; ig(m[1 — e9M3]"e™ £ () dn

+

1 . .
i 1 —[1 — e 9Mx)mygixn dn. 23
O /R g {1 = [1 = 98] el f () dy (23)
Let us first look at 7;. Its symbol, o (T}), is given by

o(Th) = ig(n)[1 — e'9Mxs)m

2 2 m
=iq(n) [—iq(n)xa + g (nxy” +.. ]

2
= g™ () + g™ () + ... (24)
If m is odd, then m + 1 is even, and g™ () is a polynomial. Now, for j =1, 2,
d d 12 cn;j
—q(n) =— (K —|n) "= —L (25)
dn; dn; ( ) q(n)
and
d
d—q'(n) = cq'2(n)n;. (26)
nj

Thus, each derivative in 5 reduces the exponent of g by two. If I = 2j + 1, then ¢'(n) is j
times continuously differentiable. In the above, if m = 2n + I,m+2=2(n+1)+1, then
o (Ty), the symbol of 7}, is n + | times continuously differentiable.

As for the operator T, we write

T(f)(x) = fR K =) f()dy. @7
One can show that
m L (m
K(x) = g(—l)” '(n)h(k,x,nx3) (28)
where
explik,/x2 + x2]
hk, x, x3) = =2 [ik(x2 +x3)7V = (P + (k2 + 2D

4 [x2? + x2

=3ikxI(x? +x2)73% 4 3x2(x? + x3)™? } (29)
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Moreover. A(k. x. xz) is a smooth function of x for a positive x3. and thus K (x) is also smooth.
Details of the derivation are given in the appendix.

3.3. An alternative implementation of the operator Ny

There is an alternative way of implementing the operator Ny. We canregard N as a convolution
with an integral kernel, which has a singularity at zero. This section sketches the details of this
approach. The interested reader may see [16] for a thorough discussion of the relevant issues.
In the following we derive an explicit expression for the kernel.

The Green’s function for the upper half-space G..q, can be expressed in terms of the
free-space Green’s function G as follows,

Giz>0)((x, 2), (x0, 20)) = G((x, 2), (x0, 20)) — G((x. —2), (X0, 20)). (30)

The Poisson kernel p for the upper half-space is the outward normal derivative of the Green's
function

a
p(x, (x0,20)) = ——G:50)((x, 2), (x0, 20))
9z =0
= 2¢'(I(x, 0) = (x0, 20)]) 0 (31
’ O OVx 0 = (o, 20)l
The Dirichlet-to-Neumann operator Ny can be expressed by the formula
. ]
Nof(x) = lur(l) ~3: / p(y, (x, 2) f(y)dy. (32)
fand Z JRr?

The kernel K (x, y) of the Dirichlet-to-Neumann operator Ny, for x # vy, is therefore the
outward normal derivative of the Poisson kernel p (see also [18]),

_ 8 x =D 33)
z=0 lx - )’|

The operator Ny has been implemented via the following approximation

d
K(X, .)’) = "5217()’ (x, Z))

No f (x) = Trapezoidal sum for / K(x,y)f(y)dy

+e1 fOOR™ + A AF(X)h + c3 F(x)k*h + O(K%) (34)

where A is the Laplace operator in R? and 4 is the side-length of an elementary grid square.
The constants ¢, 3, c3 can be computed numerically from the formula (34) using Richardson
extrapolation, see [5], p 269.

A similar approach applies to the two-dimensional case. The free-space Green'’s function
1s then given by the formula

i
p(ry= ZHo(kr) (35)
and the kernel of Ny is equal to

p(r) _ ik Hy(klx ~ y)
2 x-yl

K(x,y)=-2 (36)
We use the following approximation:

Ny f (x) = Trapezoidal sum for the / K, y)f()dy+a,(h) f(x) +ay(h) f"(x) 37

-
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where
| 1 hk R 3) i,
a(hy= =~ — (E - siog () a2 = LB, 0y 0
3h  2x 2 “\4x 4-2nr)? 4
2(h) = — bk
a(h) 21 * (2m)?

and E = 0.577215. . . is the Euler constant.

3.4. Comparison of the two methods

We have described two different methods of implementing Ny. The first one. expressing Ny
as a sum of 7T} and T». seems to be rather general and may prove useful for other integral
operators. The main idea is that a non-decaying, singular symbol is broken into two parts: the
first is non-decaying but smooth, while the second is singular but rapidly decaying at infinity.
The first part can be applied on the frequency side with a relatively coarse discretization to
functions with a fast decaying Fourier transform. Thus we can accurately evaluate T f when
f 1s smooth. The second symbol is not applied on the frequency side. but as a convolution
operator on the space side. Since this symbol is rapidly decaying, the convolution kernel is
smooth and, again, a relatively coarse discretization can be used. Thus we can accurately
evaluate 7> f when f is compactly supported.

The second method of implementing Ny illustrates how to calculate a convolution with
a kernel having a singularity at 0 numerically. The method is more direct, but the correction
coefficients have to be computed for each particular kernel.

3.5. Numerical results

In this subsection we present examples of numerical computations of approximate scattered
fields. We report our results in two dimensions and compare them with the accurate values
obtained using the classical integral-equation approach. We used the two-dimensional version
of formula (18) to calculate CDSCm(R), and a similar expression when Nj isreplaced by Ny + Ns.
The results have been obtained with N, implemented by the method described in section 3.3,
after verifying that both methods give nearly identical results in test cases.

The integral-equation method requires. however, that the scatterer be bounded. When the
scatterer is defined by a non-negative, compactly supported function ¢, it is possible to reduce
the Dirichlet problem on the open domain above ¢ to the Dirichlet problem for the exterior of
a bounded region. To this end, we first construct a solution « to the Dirichlet problem for the
upper half-space. The boundary values of u should match the given data away from the support
of the curve and can be chosen arbitrarily on the support. Next‘we consider the lens-shaped
region formed by reflecting ¢ about the plane : = 0, and the antisymmetric Dirichlet boundary
conditions given as follows: the boundary values on the upper half of the region are equal to the
original ones minus the values of u on the curve, while the boundary values on the lower half
are the negatives of the corresponding values on the upper half. We now solve the Dirichlet
problem for the resulting symmetric domain with antisymmetric boundary values. Note that
the solution vanishes everywhere on the plan€’z = 0 outside the bounded region. The sum of
u and the solution for the symmetric region is the solution to the original problem.

Tables 1-3 present results of numerical simulations for a simple test curve. In all cases,
the relative errors are computed for the reduced potential ¢ = Pear + G5(R). Using the full
potential. the relative errors are much smaller. but less meaningful. The errors are computed
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Table 1. Relative error of the reduced potential with N, = N,,.
Height
Wavenumber 1 0.5 0.25 0.125 0.0625
b4 6.72x 107! 174 x 107" 477 x 1072 127 x10"° 327 x 10~}
27 810 x 107! 324 x 107" 8356 x 107> 220x 1072 560 101
47 9.52x 1071 392x 107! 774 x 107 185 x107° 466 x 1073
87 1.13 x 10° 519 x 1071 943 x 1072 216 x 1070 505 x 1073
167 124 x 10° 482 x 107" 864 x107% 221 x107% 537 x 1073
327 1.30 x 100 568 x 107! 834 x 1077 2.06x107° 549 x 10~3
Table 2. Relative error of the reduced potential with Ny = Ny + Na.
Height
Wavenumber | 05 0.25 0.125 0.0625
7 282 x 107! 221 %1077 184 x 1073 134x10~* 244x 105
27 381 x 107" 210x1077 176 x 1073 125 x 10~*  3.28 x 10~F
4x 1.06 x 10° 9.09 x 1077 567 x107% 3.72x107% 532 x 105
8 781 x 1071 221 x 107! 981 x 107}  4.18 x 10~*  7.59 x 10-5
167 1.04 x 10 364 x 1071 9.18 x 1073 447 x10~*  2.15 x 10~*
327 1.12 x 10° 522x 107" 798 x 1073 509 x 107t 6.76 x 10~*
Table 3. Relative difference of the reduced potentials with Ny = Ny and N, = No + Na.
Height
Wavenumber | 0.5 0.25 0.125 0.0625
4 859 x 107" 1.95x 10" 494 x 1072 128x10"2 328 x 103
2n 8.68 x 107! 338x107! 869x1072 221x10"2 562x10°3
4 9.86 x 107! 452 x10"! 821 x 1072 188x10"2 4.68x10-3
87 1.03 x 10° 580 x 107" 1.03x 107! 220x10"2 507 x 1073
167 9.81 x 107! 654 x 107! 942 x 1072 225x10"2 539 x 103
327 1.02 x 10° 770x 1071 904 x 1072 209 x 102 548 x 1073
in the /2 norm:
< 1/2
(Z 19 - &p)
E = - 73 39)
(Z18:1)

where ; is the reduced potential at the ith receiver obtained by the algorithm and ®; is the
corresponding value obtained by solving the combined field integral equations directly (see [4],
p 67, for a thorough description).

Note how the relative errors increase with the height of the curve, but that they remain
nearly constant at a fixed height as the wavenumber increases.

Table 4 records the result of a scattering experiment performed for a curve having only
low-frequency components. The objective was to determine the dependence of the term N,
on the wavenumber of the incident field. We find that the error depends only weakly on the
wavenumber of the incident field once it exceeds the highest frequency of the curve.
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Table 1. Relative error of the reduced potential with N, = N,,.

Height
Wavenumber 1 05 0.25 0.125 0.0625
T 6.72x 1071 1.74x 107" 477x 1072 127x10-% 327 x 10}
o 810 x 107! 324x 107" 856 x 1072 220x 10~ 560 x 10-}
4 952x 107" 392x107" 774 x 1077 185x 10" 466 x 10-*
87 1.13 x 10° 519x 1071 943 %1072 216 x 1077 5.05 x 10-?
167 1.24 x 10° 482 x 107" 864 x 1077 221 x10°2 5.37 x 10-3
32x 1.30 x 10° 568 x 1071 834 x 1077 206x 1077 549 x 10-3
Table 2. Relative error of the reduced potential with N, =~ N, + Na.
Height
Wavenumber | 0.5 0.25 0.125 0.0625
pre 282 x 1071 221 x 1077 184 x 107} 134 x 10 2.44 x 10-5
2n 381 x 1070 210x 1077 176 x 107% 125 x 10~ 3.28 x 10-5
47 1.06 x 10V 9.09 x 102 567 x 107} 372 x10~* 532 x |05
87 7.81 x 1071 221 x 107" 981 x 10~} 418 x 10~  7.59 x 10-5
167 1.04 x 10Y 364 x 1071 918 x 1077 447 x 10-*  2.15 x 10-*
327 1.12 x 109 522x 1077 798 x 107} 509x 107! 676 x 10—

Table 3. Relative difference of the reduced potentials with Ng &~ Ny and N, = Ny + Na.

Height

Wavenumber | 0.5 0.25 0.125 0.0625

n 8359 x 1071 195 x 107" 494 x 10" 128 x 10~ 328 x j0-?
2n 8.68 x 107! 338x 107" 869x 1072 221 x10"2 5.62 x 103
4x 9.86 x 107! 4.52x 107" 821 x 10" 188 x 1072 4.68 x 10-?
8 1.03 x 10° 580 x 107" 1.03x107Y  220x 102  5.07 x 10-3
167 9.81 x 107! 654 x 107! 942 x 1072 225x 10~ 539 x 10-3
327 1.02 x 10° 770 x 107" 9.04 x 107 2.09x 10~2  5.48 x 10-3

in the /2 norm:
= 5 1/2
2P — b

E = (39)

(zi [<i>,.]2>1/2

where @; is the reduced potential at the ith receiver obtained by the algorithm and &, is the
corresponding value obtained by solving the combined field integral equations directly (see [4],
p 67, for a thorough description).

Note how the relative errors increase with the height of the curve, but that they remain
nearly constant at a fixed height as the wavenumber increases.

Table 4 records the result of a scattering experiment performed for a curve having only
low-frequency components. The objective was to determine the dependence of the term N,
on the wavenumber of the incident field. We find that the error depends only weakly on the
wavenumber of the incident field once it exceeds the hi ghest frequency of the curve.
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From (43) we find that
) elkr . ] ]
Gs(3 20N = Gs(3. ¢ = —ir— exp[—ik(0).02) - ¥]sin (ko3g(v)) + O (7) Y
Similarly,
eikr o . 1
Gr(».$0()) — Gr(y,0) = exp[—ik(w. w3) - y] (674 — 1) + O <—> : (45)
4rr r-
- Moreover,
tkr 1
Gir(y,y3) = exp[—ikw - (y,3)]+ O (—) (46)
dmr \r2
and therefore
G 5 ikr 1
———R(_\', 0) = tkws © exp[—ik(w;, w2) - ¥]+ O (—,) . (47)
ay3 4rr r:
Combining (44), (45), (47) with (40), we obtain
2ikr

Poa(R) = —GS(R) +kw3

— _ik(w) + 0y, 2 +03) - ¥]sin (koa?) dy

Q2ikr |
-——i4ﬂ2r2 -/I;i: CXp[—lk(a)l, a)z) . y] (e"lkw3{ _ 1)
1
X No (exp[—ik(o1, 02) - y]sin (ko3t)) dy +O (—5) : (48)
r

This leads to an expression in terms of the Fourier coefficients
2ikr
®sea(R) = —G5(R) + kwsp—, [sin (ko30)]" (kwy + ko), kws + koa))
m2r?

2ikr . N
;TM [(e7*¢ — 1) No (expl—ik(1, 0) - y)sin (ko3 )] (key, ken)

+0 (%) ) (49)

In the special case, when the source is directly above, this formula becomes
eikr
Pscar(R) = —=G3(R) +kw3Z]—r— [sin (k£)]" (kwy, kw,)

2r2

—i

' e21kr
—1

. . A 1
o [(e™*% — 1) No (sin (k£))]” (kwy, k) + O (73) : (50)

Similarly, for the two-dimensional case, one can derive the following formula:
2ikr

. [
Gy (R) = _GS‘(R) +1w3
2nr
e2ikr

i A 1
e [(e—lkwﬂ _ 1) Np (sin (ké’))] (kwy)+ 0O (r_?') . (51

Although we used expression (51) in our numerical experiments, we would like to mention
the following formula because of its appealing simplicity. For small elevations k¢, the sines
and the exponentials can be expanded in powers of their arguments, yielding

eZikr

[sin (k$)]" (ko))

+

Dsear(R) = "GS‘(R) + kw3

1
(¢ — {Not)” (kw1)+0(;5)- (52)

2rr
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A similar result holds in three dimensions.

Let us now describe the geometric setup in two dimensions. The function ¢ is supported
on the interval [—1. 1]. The receivers at which we measure the scattered field are located on a
semicircle of radius 10° in such a way that their projections on the x-axis are equispaced. The
number of receivers is |2k /7 |. The source is located at the point (0. 10°).

Our reconstruction of ¢ proceeds as follows.

e Step 0. We set the initial approximation to zero.

e Step 1. We choose an initial value for the wavenumber k and seek an approximation to
the function ¢ by a trigonometric polynomial of degree not exceeding k. Substituting

;= i cne™ (53)

n=-k

in (51), we solve for the coefficients ¢n using Newton’s method with the previous
approximation as the starting point. The resulting solution represents the Fourier
coefficients of ¢ corresponding to the frequencies not exceeding .

e Step 2. We increase k to a new value k' (k" = 2k is a convenient choice). We repeat
step 1 with the previous approximation to ¢ as our starting point. More precisely, we

approximate ¢ by the Fourier series Zk=_k, cne'™ and determine the coefficients cn by
solving (51) using Newton's method starting from the previous result:

c for |n| < k
=1 " s (54)
0 for [n| > k

where the coefficients ¢, come from step 1.

We now iterate step 1 and step 2 until we reach a prescribed frequency ko. For a complete
reconstruction we need to choose kq larger than the highest frequency of the curve.

We have observed experimentally that the continuation method described above converges
for a larger class of surfaces than Newton’s method starting at £ = 0.

0.07
fiterad curve —
second order raconstruction --
first order reconstruction

0.064

0.05+

0.044

0.034

Figure 1. Reconstructions of the curve filtered at k = 7. Filtered curve ——; second-order
feconstruction - - - -; first-order reconstruction - - - . . . .
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4.2. Numerical results

Figures 1-6 illustrate the continuation method as described in the previous subsection. The
solid curve in the final figure is the unknown curve to be reconstructed. The first figure
shows a filtered version of that curve at wavenumber 7. and the reconstruction carried out
using Newton’s method starting from the zero curve. The second-order reconstruction is
plotted together with the “classical’ linear reconstruction. The output of the second-order
reconstruction is then the starting point for the next stage, where the wavenumber doubles (and
so does the number of receivers on the semicircle). We proceed successively. as outlined in
section 4.1, until we reach the wavenumber that is above the highest frequency of the curve. At
each stage we attempt to reconstruct the true curve filtered at the corresponding wavenumber.
The final reconstruction using the second-order method with continuation approximates the

S fitered curve ——
secony order reconstruction ----
... fir{order reconstruction -

0.064 LT
0.05
0.04

0.034

0.024

1 -0.8 06 0.4 0.2 0 02 04 0.6 08
Figure 2. Reconstructions of the curve filtered at k = 2. Filtered curve ——: second-order
reconstruction - - - -: first-order reconstruction - - - - - - .

0.084
R fitered curve —
. second ordar reconstruction ----
first order reconstruction - -
0.074
0.06
0.054
004- Rp— ‘\-(”
0.03- )
0.024
0.014
K) 08 06 04 02 0 02 o4 05 08 1
Figure 3. Reconstructions of the curve filtered at k = 47. Filtered curve ——: second-order

reconstruction - - - -; first-order reconstruction - - - - - - .
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thered curve —
sacond order reconstruchon ----
0074 tirst order reconstruction
0.064 /
0.054
0.044
0.034
0.024 _
0.014
0+
0014
T 002 . r T T y T T r T
-1 -08 06 04 02 0 02 04 06 08 1
Figure 4. Reconstructions of the curve filtered at k = 87. Filtered curve ——: second-order
reconstruction - - - -; first-order reconstruction - - - - - - .

0.08+ fiered curve —

second order reconstruction ~---
first order reconstruction
0.074

0.06

0.054

0.04+

0.034

0.02

0.014

'0014 ¥ r T T - T T \ = T T

-1 -0.8 0.6 -0.4 0.2 0 02 04 06 08 1
Figure 5. Reconstructions of the curve filtered at k = 167. Filtered curve ——; second-order
reconstruction - - - -; first-order reconstruction - - - - - - .

curve very well. The first-order reconstruction is good for the first two stages but then moves
further and further away from the actual curve.

5. Conclusions and summary

We present an implementation of Milder’s operator expansion algorithm for acoustic scattering
with Dirichlet boundary condition. We modify the integral used by Milder to ensure that
all integral operators are applied to compactly supported functions and integrations are
performed on bounded sets. Our main contribution to the forward-field calculation has been the
development of two accurate ways of implementing the Ny operator. We have also combined
Milder’s formalism together with a continuation method in frequency to reconstruct accurately
rough boundaries with rather large heights. We have presented examples for which our
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0.08

curve —
second order reconstruction ----
tirst order reconstruction -

0.074

0.06

0.05+

0.044

0.034

0.02+

0.014

R N U A S

K 08 06 04 02 0 0.2 04 06 08
Figure 6. Reconstructions of the original curve with k = 327. Original curve ——: second-order
reconstruction - - - -: first-order reconstruction - -« - - - .

method using second-order terms works, but for which the first-order reconstruction fails.
Our numerical results suggest that the higher-order approximation errors from incident fields
having higher wavenumber than the frequency content of the boundary tend to remain nearly
constant as the wavenumber of the incident field increases.

A scheme for the fast evaluation of the Helmholtz potentials can be added to accelerate
the algorithm. Such methods are currently being developed by several authors.
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Appendix

In this appendix, we provide a detailed derivation of the kernel of the convolution operator T,
defined in section 3.2.
From (23) we obtain

ROW = G f / ig({1 = [1 — M5 )e=01eixn £(y) dy dy
(27T)“' R? JR2
= f d)Vf(y)_.l__?/ ig(m{l —[1 _eiq(n)xg]m}ei(x-—y).,’ dn
RZ (27T)" ]Rz
= fR K(x—y)f(ydy (55)
where

K(x) = —1—7 f ig(m{1 —[1 — eiq(n)x:s]m}eix-n dn
(27T)‘ R?

1 7 m\ . )
_- : -1 n+l 1g(mnxs 4ix-n d
G fR 14(77);( ) (n)e e dn
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= Z(-l)"*’ (m)h(k.x.nxg)
n=| n

with
] o
h(k,x, x3) = . / ig(n)ett el M dp
(2}’7)' 3
We note that h(k. X. x3) can also be expressed as
hk, x, x3) = T ———az / e”"”e"’“’”‘——dn .
T 2 axg? Jx q(n)
We shall use the spectral form of the free-space Green's function. see (13].
explik||X — Y||] 1] / ) . dn
= —— expli(x — v) - n+i X3— ¥y .
4T X = 7] 2 @) S Plilx —¥) - n +ig(n)|xs '3”q(n)
Again, since x; is positive, setting ¥ = 0, we obtain
explik,/x?+xi] | i (] dn
= - 5 explix - n +ig(n)xs
4 /x? +x3 2(2m)* Jg: q(n)

where x2 = xi" + xzz. Substitution of (60) into (58) gives

32 [ explik\/x? + x3]

ax3? 2,2
3 4mw./x2 + X3

After a straightforward calculation, we obtain:

explik,/x2 + x}]
hk, x, x3) = =2
4./ x? +x32

=3ikx3(x* +x3) 7 4 3x2(x2 + xi)‘z}.

hk,x, x3) = =2

[ik(x2 +x32)_”2 — (k2x32 + 1)():2 +Jr32)_l
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RAPID EVALUATION OF NONREFLECTING BOUNDARY
KERNELS FOR TIME-DOMAIN WAVE PROPAGATION*

BRADLEY ALPERT?!, LESLIE GREENGARD?, AND THOMAS HAGSTROMS

Abstract. We present a systematic approach to the computation of exact nonreflecting bound-
ary conditions for the wave equation. In both two and three dimensions, the critical step in our
analysis involves convolution with the inverse Laplace transform of the logarithmic derivative of a
Hankel function. The main technical result in this paper is that the logarithmic derivative of the Han-
kel function HL(,”(::) of real order v can be approximated in the upper half z-plane with relative error
£ by a rational function of degree d ~ O(log |v| log % +log? |v] +|v|™? log? %) as [v| — oc, £ — 0, with
slightly more complicated bounds for v = 0. If N is the number of points used in the discretization of
a cylindrical (circular) boundary in two dimensions, then, assuming that € < 1/N, O(N log N log é)
work is required at each time step. This is comparable to the work required for the Fourier trans-
form on the boundary. In three dimensions, the cost is proportional to N2log? N + N2 log Nlog%
for a spherical boundary with N2 points. the first term coming from the calculation of a spherical
harmonic transform at each time step. In short, nonreflecting boundary conditions can be imposed
to any desired accuracy, at a cost dominated by the interior grid work, which scales like N2 in two
dimensions and N3 in three dimensions.

Key words. Bessel function. approximation, high-order convergence, wave equation, Maxwell’s
equations. nonreflecting boundary condition. radiation boundary condition, absorbing boundary con-
dition

AMS subject classifications. 33C10, 41A20, 44A10, 44A35, 65D20

PII. S0036142998336916

1. Introduction. A longstanding practical issue in numerical wave propaga-
tion and scattering problems concerns the reduction of an unbounded domain to a
bounded domain by the imposition of nonreflecting boundary conditions at an arti-
ficial boundary. We restrict our attention to “time-domain” calculations, for which
it is well-known that the exact nonreflecting conditions are global in both space and
time. While the problem has been widely studied (see Givoli [1] for an overview),
the boundary conditions used in practice typically introduce serious numerical arti-
facts. An exception is the method developed by Ting and Miksis [2], which relies
on Kirchhoft’s formula to solve the wave equation in an exterior domain, but which
Is computationally expensive. The two most common approaches are based on the
construction of local differential boundary conditions [3, 4] or absorbing regions [5, 6},
but neither provides a clear sequence of approximations which converge to the exact,
nonlocal conditions. Recently, Sofronov [7] and. independently, Grote and Keller 8]
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have developed and implemented an integrodifferential approach for three-dimensional
calculations using a spherical boundary and have demonstrated that high accuracy
can be achieved at reasonable cost. In their schemes. the work is of the same order
as the explicit finite difference or finite element calculation in the interior of the do-
main. For N? points on the spherical boundary, O(N3) work is required. Hagstrom
and Hariharan [9] have shown that these conditions can be effectively implemented
using only local operators, but at the cost of introducing a large number of auxiliary
functions at the boundary. A somewhat more general. but closely related. integral
formulation is introduced in {10. 11. 12]. The fundamental analytical tool in the latter
papers is what we refer to as the nonreflecting boundary kernel which is the inverse
Laplace transform of the logarithmic derivative of a Hankel function.

In this paper, we prove that the logarithmic derivative of a Hankel function can be
approximated as a ratio of polynomials of modest degree, so that its inverse Laplace
transform can be expressed as a sum of exponentials. Our analytical approach com-
bines an extension of the Mittag-Leffler theorem with the approximation techniques
of the fast multipole method. In particular, Theorem 4.1 presents an exact represen-
tation of the logarithmic derivative as a sum of poles plus a continuous density on the
branch cut. Theorem 4.6, which is preceded by several technical lemmas, presents a
reduced, approximate representation.

Using this approach. the cost of computing the nonreflecting boundary condition
is comparable to that of a fast Fourier or spherical harmonic transform. For two-
dimensional problems, O(N log N log %) work is required at each time step, where N is
the number of points used in the discretization of a cylindrical (circular) boundary. In
three dimensions, the cost is proportional to N2log? N+ N2log N log 1 for a spherical
boundary with N? points. The first term comes from the calculation of the spherical
harmonic transform using the fast algorithm of [13, 14].

Other authors. including Nédélec [15] and Cruz and Sesma [16], have studied
the logarithmic derivative of the Hankel function. based on a variety of techniques.
In this paper we present a sum-of-poles representation for the logarithmic derivative
of a Hankel function of real order v bounded away from zero with accuracy ¢ for
argument. z, satisfying Im(z) > 0. The number of poles is bounded by O(log|v| -
log l +log? (V] +|v|~! log? %) A similar representation for v = 0 is also derived which
is valid for Im(z) > 1 > 0 requiring O( log +-log 1 +log ! loglog ! +log % -log log %)
poles.

In section 2. we introduce nonreflecting boundary kernels. In section 3 we collect
background material in a form convenient for the subsequent development. Section 4
contains the analytical and approximate treatment of the logarithmic derivative, while
a procedure for computing these representations is presented in Section 5. The re-
sults of our numerical computations are contained in section 6, and we present our
conclusions in section 7.

2. Nonreflecting boundary kernels. Let us first consider the wave equation
(2.1) uy = 2 V3u
in a two-dimensional annular domain py < p < p;. The general solution can be

expressed as

oo

22)  ulpdt)= Y €™ L [an(s) Kn(ps/c) + ba(s) In(ps/c)) (2),

n=—0oc
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where K, and I, are modified Bessel functions (see, for example, {17, section 9.6]),

(2.3)
K.(z) = %i"*lH,(l”(ze”/z), I(z) = i_"Jn(zer‘i/"’), -7 <argz <

WA

the coefficients a,, and b, are arbitrary functions analytic in the right half-plane, £
denotes the Laplace transform

(2.9) cifi) = [ e
0
and £~! denotes the inverse Laplace transform
= —17 1 e st
(2.5) Ll =5 [ etals)as
27t —i00

Likewise, for the wave equation in a three-dimensional domain ro < r < ry, the
general solution can be expressed as

(2.6)
Kn+%(rs/c) In+%(7's/c)

u(ro.0.t) =" > You(e,0) L} [anm(s) e + bnm(s) e (t)

n=—ocm=—n

If we imagine that p = p; (or r = r)) is to be used as a nonreflecting boundary;,
then we can assume there are no sources in the exterior region and the coefficients
bn(s) (or bnm(s)) are zero. Let us now denote by un(p,t) thé function satisfying

(2.7) Llun)(p. 8) = an(s) Kn(ps/c).

Then

£ 5un) (09) = an(s) - £ - Ki(psyo

(2.8) = Llual(p. 5) - (g %ﬁ;ﬁ%),
so that

7] s K! (ps/c
(2.9) Sun(6.8) = wn(p.t) = £ [; f—((:js—fcﬂ (®),

where * denotes Laplace convolution

(2.10) (f*9)(t) = /O f(r)g(t - 7) dr.

The convolution kernel in (2.9) is a generalized function. Its singular part is easily
removed, however, by subtracting the first two terms of the asymptotic expansion

(2.11) ——"('.L‘/C—)rv—f—i—l-O(s_l)7 5 — 00.
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From the assumption un(p,t) = 0 for ¢ < 0 and standard properties of the Laplace
transform we obtain the boundary condition

o 108 1 ‘
(2.12) 8—pun(p.t) + Eaun(p.t) + 2—pun(p.t) = /0 On(t = T)un(p.7) dr.
where
_,-1ys 1 _LEK;I(PS/C)
(2.13) on(t)=L {z "5, Cm} (t).

which we impose at p = p;.
Remark. The solution to the wave equation in physical space is recovered on the
nonreflecting boundary from u, by Fourier transformation:

N/2-1

(2.14) ulprot) = 3 ualort) ™,
n=-N/2

assuming N points are used in the discretization.
The analogous boundary condition in three dimensions is expressed in terms of
the functions u,m, (r.t) satisfying

. K, 11(rs/c)
(2.15) L{tnm) (7, 8) = anm(s) _j/_ri_/sc/i

After some algebraic manipulation, assuming . (r,t) = 0 for t < 0, we have

5, 10 1 ¢
(2.16) = Unm (7)) + == Unm (T, 1) + ~Upm (1. t) = / Wn(t = T) Unm(r, 7) dT,
r 0

9r c ot
where
K’ l(rs/c)
S 1 S " Tn4 i
2.17 w(t) = L7 24 2,
(2.17) wn(t) [c+2r+cKn+%(7”8/C) ).

which we impose at r = 7.

Note that the boundary conditions (2.12) and (2.16) are exact but nonlocal, since
they rely on a Fourier (or spherical harmonic) transformation in space and are history
dependent. The form of the history is simple, however, and expressed, for each sepa-
rate mode. in terms of a convolution kernel which is the inverse Laplace transform of
a function defined in terms of the logarithmic derivative of a modified Bessel function

d - K(2)
(218) E;lOgI\U(~)— —I—{’Tz)
Remark. In three dimensions, the required logarithmic derivative of K, ., 1 (z) is
a ratio of polynomials, so that one can recast the boundary condition in terms of a
differential operator of order n. The resulting expression would be equivalent to those
derived by Sofronov [7] and Grote and Keller [g].
The remainder of this paper is devoted to the approximation of the logarithmic
derivatives (2.18) as a ratio of polynomials of degree O(log v), from which the convo-
lution kernels 0, and w,, can be expressed as a sum of decaying exponentials. This
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representation allows for the recursive evaluation of the integral operators in (2.12)
and (2.16). using only O(logn) work per time step (see [18]). We note that. by Par-
seval's equality. the L error resulting from convolution with an approximate kernel
is sharply bounded by the Lo, error in the approximation to the kernel's transform.
Precisely. approximating the kernel B(t) by the kernel A(t) we find

[A*u—Bxul, =||A2 - Bd|, < sup I—‘il—f—
* seik |B

(2.19) = sup —;—”B * u

where we assume that A, B, and @ are all regular for Re(s) > 0. For finite times we
may let s have a positive real part, n:

2.20 Axu—Bxu <e su IA—BI
(2.20) | ”L ©.1) > p

[l IB| “B*“HL?(O.T)'

We therefore concentrate our theoretical developments on Lo approximations. For
ease of computation, however, we compute our rational representations by least
squares methods. These do generally lead to small relative errors in the maximum
norm. as will be shown.

Since Hankel functions are more commonly used in the special function literature,
we will write the logarithmic derivatives as

4 d ' H(l)l(z eﬂi/Z)
— loc K = —log H) T2 =
ea) ek = logH o) =i S IO

We are, then, interested in approximating logarithmic derivative of the Hankel func-
tion on and above the real axis.

3. Mathematical preliminaries. In this section we collect several well-known
facts concerning the Bessel equation, the logarithmic derivative of the Hankel func-
tion, and pole expansions, in a form that will be useful in the subsequent analytical
development.

3.1. Bessel’s equation. Bessel’s differential equation

d®u  1du ( V2

(31) EZ_2+;d" 1——>u—0

for v € R, has linearly independent solutions H'Y and H,SQ), known as Hankel’s
functions. These can be expressed by the formulae

v(2) — e—UﬂiJU(z)

isin(vm) '

_Jou(2) — e (2)

isin(vm)

(32)  HO(:= HP () =

Bl

where the Bessel function of the first kind is defined by

2/4
(3:3) Zklr (v+k+1)
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The expressions in (3.2) are replaced by their limiting values for integer values of v.

(See. for example. [17. section 9.1].) For general v, the functions H{" and H!* have
a branch point at z = 0 and it is customary to place the corresponding branch cut
on the negative real axis and impose the restriction —7 < argz < =. We shall find
it more convenient, however. to place the branch cut on the negative imaginary axis.
with the restriction

(3.4) ——-<argz <

o H
ol

Hankel's functions have especially simple asymptotic properties. In particular (see.
for example, (19, section 7.4.1]).

1/2 . o<
(3.5) HMV(z) ~ (3) ilz=vm/2-7/4) Zik Aiiu)’

Tz

k=0
. N2 = . Ax(v) 1k
(1) (£ i(z—vm/2—7/4) kLklV) 1 _ _)
(36)  HY ()~ (=) e k§—02 S (- i

as z — oo, with —7 + 6 < argz < 27 — 8, where
(402 —12) (402 - 3%) .- (402 — (2k — 1)2)
k! 8k '

and the branch of the square root is determined by

(3.7) Ap(v) =

(3.8) 21/2 — e(log;z}+iargz)/2_
Finally we note the symmetry
(3.9) HV(z) = e H Y (2),

We also make use of the modified Bessel functions K, (z) and I,,(z). These are lin-
early independent solutions of the equation obtained from (3.1) by the transformation
2z — iz. Their Wronskian satisfies

(3.10) K, (2)I(z) — K (2)I,(z) = z7 L.

Moreover we have for positive r [20]

(3.11) HY (re=™/?) = —_%e"’"‘i/g(e""‘iix",,(r) + wil, (r)).
T

Asymptotic expansions of K, (r) and I,(r) for 7 small and large are also known 17,
sections 9.6 and 9.7]. For real r and v > 0 we have

log = 0
f — 109 — ==
B g27 v )

(3.12) K, (r)~ T(v) /r\-v r— 0,
7 (3) o+ v>o.
1 T\V

(313) [U(T)N m(i) ’ T‘-—'O,

(3.14) K,(r)~ 1/-27%6_1-, T — 00,
1 T
(3.15) IL(r) ~4/ 7 € T — 00.
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Here ~ = 0.5772... is the Euler constant.
Finally. we note the uniform expansions of Bessel functions for v — o given in
[17]. For Hankel function and derivative we have

i 4C 1/4 AAi(eQWi/BI/Q/‘gC)
(3.16) H (vz) ~ 2 /3<1 — 22 ) p1/3
_ , 4e—27i/3 4¢ ~1/4 Ai’(e27ri/3y‘2/3<)
(3.17) HY (v2) ~ z (1 - z9) 1273

as v — o, where we restrict z to |arg(z)| < 7/2 and define

2 1+vV1-—2z2
(3.18) S = log— Y17 T2
P4
Here. Ai(t) denotes the Airy function [17, section 10.4]. Note that ¢ = 0 when z = 1.
Large v approximations of the modified Bessel functions for real arguments, r, are

given by

0 K T e~ Vo) I 1 eV #(r)
3.1 ~ g ———— v ~ . — 00,
(3.19) K (vr) 2 (1 r2) (vr) s 1+ Voo
where

-
3.20 r) =log ———n—— + /1 4 r2,

3.2. Hankel function logarithmic derivative. We denote the logarithmic
derivative of ngl) bv G,

d HY (2)
9 = —loc HU () = 2% \*</
(3.21) Gu(2) = 5-log HV(z) Ty

The following lemma states a few fundamental facts about G, that we will use below.
LEMMA 3.1. The function G,(z), for v € R, satisfies the formulae

(3.22) G_u(2) = G,(2),
(3.23) G,(ze™) =G, (2) ™, —g <argz < g

where Z = |z| '€= s the compler conjugate of z. Asymptotic approzimations to
G, are

(log(ze~™/2/2) + ’y)—l 271+ 0(2), v=0,

(3.24) Gu(z) ~ —lv| 27t + O(22vI=1), 0< vl <1, 20
Y —lv] 271 + O(zlog 2), lv| =1, ’

—lv| 27 + O(2), vl > 1,

where «y is the Euler constant,

(3.25) G’,,(z)Niik%j—)(—i-f-i—ﬁ)/iikflk(y), z = o0,
k=0

2z z zk
k=0
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Re(z)

Fic. 3.1. Curve z(¢) defined by (3.18) near which the scaled zeros of Hl(,l) lie (see Lemma 3.2).

The branch cut of Hl(,l) s chosen (3.4) on the negative imaginary axzis.
where Ay (v) is defined in (3.7), and

20773 40\ =12 A1 (e27/312/3¢)
)

(3.26) Colvz)~ —- (12 Ai(e2m/3,2/3¢)

where ( is defined in (3.18). Furthermore. the function u, defined by
(3.27) u,(2) =2G,(z)

satisfies the recurrence

(328) UV(Z) = F-—Z;L:T(z) - V.

Proof. Equations (3.22) and (3.23) and asymptotic expansion (3.24) follow im-
mediately from the definitions (3.2) through (3.4) of J, and H{Y. The asymptotic
expansion (3.25) follows from (3.5) and (3.6), while (3.26) is a consequence of (3.16)
and (3.17). The recurrence (3.28) from standard Bessel recurrences [17, section
9.1.27]. 0

The zeros of H"(z) are well characterized (17, 20); they lie in the lower half z-
plane near the curve shown in Figure 3.1, obtained by transformation [21] of Bessel’s
equation. In terms of the asymptotic approximation (3.16), this curve corresponds to
negative, real arguments of the Airy function.

LEMMA 3.2. The zeros hy, 1, hyo,... of Hl(,l)(z) in the sector ~w/2 < argz <0
are given by the asymptotic expansion

v — o,

(3.29) hum ~va(G) +Owh), T L. |wl/2 + 1/4),

uniformly in n, where ¢, is defined by the equation

(3.30) Cn = e727/3,=2/3,

z(¢) is obtained from inverting (3.18), and a,, is the nth negative zero of Airy function
Ai. The zeros in the sector m < argz < 3m/2 are given by —h,1,~h,,,.... In
particular,

(3.31) hoi ~ v+ e 23y )13 (_q)),

where —a; = 2.338....
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3.3. Pole expansions. A set of poles in a finite region defines a function that
is smooth away from the region. with the smoothness increasing as the distance in-
creases. This fact leads to the following approximation related to the fast multipole
method [22, 23].

LeEmMA 3.3, Suppose that q....,q, are compler numbers and z,.....z, are
compler numbers with |z;| <1 for j =1,...,n. The function
(3.32) f()=3 =
=17

(3.33) gm(z) = Y

where w = 27i/™

is a root of unity and v; is defined by
(3.34) V=

The error of the approzimation is bounded by

_ 5 . 2(a® +1) 5
(3.35) |£(2) = gm(2)] < mW(‘-)L
where
(3.36) F(z) = ol

Z — Zj

m—1 3
1 vk ™1
3.37 = i
( ) z—v k=02k+1+zmz—v
to obtain
m-—1 1 n m—1
f(2) = gm(z) = Zh+1 <ZQJ' 25 Z Y5 ka)
k=0 j=1 j=
n m-—1 ;:
(3.38) + L( 45" X~ w””)
zm z — z; z—wi/’
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All'm terms of the first summation vanish. due to the combination of (3.34) and the

equality Z;":_Ol wIk = m 4. For the error term we obtain

n . n
ZqJZj < ql;{ S%Z_ﬂ—
j=1°7 % j=1 <" MJ:I ’1*23'/2'
1 41 (1-a Vgl a?+1 1 " gl
<= < s Re( S" 19l
~ 2] (a—l)QJ; 1+a-2 (a—1)2|z] ;1—21/:
(3.39) < a?+1 Zn: lgs] | a?+1 138)
' T (a-1)? Pk (a—1)2 )
and
m—l’)‘ L gm m-1 5
¥ ed ] -
(3.40) P > | =lom(2)].
7=0 j=0

Moreover, repeating the computations of (3.39). we find

a’? +1

3.41 < ——|F(2)].
(3.41) £ € Sl Fe)
Now the combination of (3.38) through (3.41) and the triangle inequality gives
(3.35). O

Inequality (3.35) remains valid if we assume instead that |z;] < b and Re(z) =
ab > b, for arbitrary b € R, b > 0; this fact leads to the next two results whose proofs
mimic that of Lemma 3.3 and are omitted.

LEMMA 3.4. Suppose n,p are positive integers, q,....,q, are complexr numbers,

and z1,.... 2n are compler numbers contained in disks Dy, . .. Dy of radii ry, ..., Tp,
centered at cy,. ... cp, respectively. The function
n q .
(3.42) flzy =) ——
i=1 < <j

can be approzimated for z satisfying Re(z — ¢;) 2 ar, >r; fori=1,...,p by them -p
pole expansion

p m-—1
71]'

(3.43) gm(z) = (et ony

; =0 (e: 41 w7)
where 7y;; is defined by

1=t 2p —ci\! =1
o= -5l N l) LT P
(49 ==Y w > ( ) j=0,...,m~1
= 2k €D\U, -,

with U; = Uj<;D;. The error of the approzimation is bounded by

2(a? +1) |E(2)]

(3.45) 176 = 9m()] < o




1148 BRADLEY ALPERT. LESLIE GREENGARD. AND THOMAS HAGSTROM

where

n

[
(3.46) F(z)=Y 14
| ;

=17

tr

LEMMA 3.5. Suppose that the discrete poles of Lemma 3.4 are replaced with a
density q defined on a curve C with C C U, = Dy U---U D, specifically

(3.47) o= [ 2.
cz=¢
which is finite for z outside U, and that g, is defined by (3.43) with vi; defined by
m—1
1 . ¢ —ci\! i=1,...,p.
3.48) Ay = — w ]l/ g(Q)|——) d¢, . e
( ) " m ; CN(D\U._1) ( ( T3 > }:0,...,77’1—1,

with U; = Uj<;D;. Then the bound (3.45) holds as before. Lemma 3.3 enables us
to approximate, with exponential convergence, a function defined as a sum of poles.
The fundamental assumption is that the region of interest be “separated” from the
pole locations. The notion of separation is effectively relaxed by covering the pole
locations with disks of varying size in an adaptive manner. In Lemmas 3.4 and 3.5,
we use this approach to derive our principal analytical result.

4. Rational approximation of the logarithmic derivative. The Hankel
function’s logarithmic derivative G,(z) defined in (3.21) approaches a constant as
z — oc and is regular for finite z € C, except at z = 0, which is a branch point, and at
the zeros of H{" (2), all of which are simple. We can therefore develop a representation
for G, analogous to that of the Mittag-Leffler theorem; the only addition is due to
the branch cut on the negative imaginary axis. It will be convenient to work with
u,(z), defined in (3.27). for which approximations to be introduced have simple error
bounds.

THEOREM 4.1. The function u,(z) = z G, (z), where G, is defined for v € R by
(3.21) with the branch cut defined by (3.4), is given by the formula

N .
1 “ hyn 1 % Im(u,(re”"/2))
4.1 v(z) =1z — = —_ = —_— Y4
(4.1) w(z) =iz 2+;2—hu,n T Jo ir+z r
for z € C not in {0,h,1,hy2,...,hy N} and not on the negative imaginary axis.

Here hy, 1, hy2,...,hy N, denote the zeros of H,Sl)(z), which number N,.

Proof. The case of the spherical Hankel function, where v = k + 1 /2 for k € Z,
is simple and we consider it first. Here u,(z) is a ratio of polynomials in iz with real
coefficients, which is clear from the observation that u;,9(z) = iz—1/2 in combination
with the recurrence (3.28). Hence

N,
au,n
(42) w(z) =p(z) + 3 =5,
n=1 v,n

where p is a polynomial and «,, , is the residue of u, at hyn,

(4.3) oyn = lim (z—=hyn)u,(2) = h,p

z—hy,
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Im(2)

Re(?)

F1G. 4.1. Integration contour Cp,, with inner circle radius 1/m and outer radius m + 1.

by 'Hopital's rule. We see from (3.25) that

1
(4.4) u,,(z)wiz—§+0(:'l). z — oc,
whence
(45 () =iz~
4 z) =1z — —.

) p 5
Noting that w,(iy) € R for y € R. and combining (4.2). (4.3), and (4.5). we obtain
(4.1).

We now consider the case v # k+1/2, k € Z, for which the origin is a branch point.
For m = 1,2,..., we define C,, to be the simple closed curve, shown in Figure 4.1,
which proceeds counterclockwise along the circle C4 of radius m + 1 centered at the
origin from arg z = —7/2 to 37/2, to the vertical segment 2 = re37/2 r € [1/m, m+1],

to the circle C$? of radius 1/m centered at the origin from argz = 37 /2 to —7/2, to
the vertical segment z = re™™/2 back to the first circle. Since none of the zeros of

HY lies on the imaginary axis, Cp, encloses them all if m is sufficiently large. For
such m, and z € C inside C,, with H,(,l)(z) # 0, the residue theorem gives

1 u,(() _ hyn
(46) % .. C—z dc—uy(2)+n=l hu‘n -

We now consider the separate pieces of the contour C,,. For the circles c and C,(,f),
we use the asymptotic expansion (4.4) about infinity and (3.24) about the origin to
obtain

. 1 u,(¢) . 1 . 1 u,(C)
4.7 — —=d( =iz — =, Py ———a( =0
(4.7) mlg}gc 271 /Cf,f’ (~z ¢=1 2 mli-l}loc 27 v/Cf.f) (—z @ =0
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-1

-2

Fic. 4.2. Plot of Re(u.,(re‘”i/z)), containing the zero crossing, and Im(uv(re""'i/z)), for
v=2and7T €]0.3].

Now exploiting the symmetry w, (re®™/2) = vy, (re=™/2) from (3.23) for the vertical
segments. we obtain

e—m‘/2 dT,

u * 2¢Im(u, (re~"?
(4.8) lim i/ AR L/ 2i Im (u, ( ))
¢ 0

1
m—oe 2mi Jo (-2 27 2m (re=7i/2 — 2)

which, when combined with (4.6), yields (4.1) and the theorem. 0

The primary aim of this paper is to reduce the summation and integral of (4.1)
to a similar summation involving dramatically fewer terms. To do so. we restrict z
to the upper half-plane and settle for an approximation. Such a representation is
possible, for the poles of u, (zeros of H 51)) lie entirely in the lower half-plane and do
not cluster near the real axis. We first examine the behavior of u, on the negative
imaginary axis.

The qualitative behavior of u, on the branch cut is illustrated by the case of
v = 2, shown in Figure 4.2. The plot changes little with changing v, except for the
sign of Im(u,(z)) and the sharpness of its extremum.

LEMMA 4.2. Forv € R, v#k+1/2, k € Z. the function u, (re~"2) is infinitely
differentiable on r € (0,00) and has imaginary part satisfying the following formulae:

(4.9) Im (u, (re~™/?)) = 7 cos(v) _#0,
cos?(vm) K2(r) + (71, (r) + sin(vm) K, (r))
il 0
i log(r/2) + )2 + 72’ '
(410)  Im(u,(re /%)) ~ { { m(os/(,)w) ”)QM r—0,

TR

(4.11) Im(u,,(re'"i/z)) ~ 2cos(vm)re™?", T — 00,

_ Vs
(412) Im(uu(re-ﬂ'l/?)) ~ COS(V'IT) ré+v |1/| — o,

cosh (2v ¢(r/|v])) + sin(|v|7)’
where ¢ is defined in (3.20).
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Proof. Infinite differentiability of u, (z) follows from the observation that H. 1(/”(:)
# 0 on the negative imaginary axis. To derive (4.9) we recall (3.11) to obtain
rm cos(vm) (K, (r)I}(r) = K.(r)L,(r))
cos?(vm)K2(r) + (zI,(r) + sin(vm) K, (r))°

v

(4.13) Im (u, (re=™2)) =

then apply (3.10). The remaining formulas follow from the asymptotic forms of K, (r)
and I, (r) for small and large 7, and the uniform large v expansions given in (3.12)
through (3.15) and (3.19). Here we use the svmmetry u_, = u,. Note that (4.10) is
valid for r/|v| — 0. The approximation (4.12) is nonuniform for v ~ 2k — 1/2 and
7l (r) +sin(vm) K, (r) = 0. O

LEMMA 4.3. Given vg > 0 there exist constants ¢y and ¢y such that for all v € R.
Wi2vy. v#k+1/2, k€Z, and all z satisfying Im(z) > 0. the function

o -mi/2
(4.14) £(2) :/O Iy (re™™7%)

i+ 2
satisfies the bounds

Co 1

(4.15) Tz < VOIS T

Moreover, there exists § > 0 such that for allv € R, lv| > v, and e with0 < & < 1/2,
f(2) admits an approzimation g(z) that is a sum of d < é-(1+[v|"! log(1/¢)) log(1/e)
poles. with

(4.16) 1f(z) —9(2)| < e 1f(2)

provided Im{z) > 0.
Proof. We assume v # k + 1/2 for integral k and begin by changing variables,
r = |v|w, so that

< Im(u, (|vlwe™7i/2 oc
(4.17) f(z):/o m(uil+lz/|u; ) dw:/o s (w)dw.

1

From the nonvanishing of . and its asymptotic behavior in w, it is clear that (4.15)
holds for |v| € (vg.v1) and any fixed vy > vo. Using (4.12) for |v] large but bounded
away from 2k —1/2 for integral k. an application of Watson’s lemma to (4.14) focuses
on the unique positive zero. w*, of o defined in (3.20). As the derivative of this
function is positive, we conclude

a cos(vm)
(4.18) f(z) ~ o T 2]

where o is a function of w*, so that (4.15) clearly holds. However, as v — 2k — 1/2,
the denominator on the right-hand side of (4.12) may nearly vanish at w* and the
expansion loses its uniformity. Setting cos(v7m) = 7 in these cases, we see that the
denominator has a minimum which is bounded below by O(n?). Hence in an O(jv|™1)
neighborhood of the minimum which includes w*, we have

(4.19) /#~(w) _ avi/TE @) e )

_ —————ds,
wr+z/lvl 0?4 B
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which by the change of variables s = nz/[v| is seen to satisfy the upper bound in
(4.15) uniformly in 7. As the rest of the integral is small. the upper bound holds.
We now move on to the approximation. For a positive integer m and a positive

number wp. we define intervals Iy = (0,wo), I; = (29" wg, 2wy) for j = 1..... m.
and I ;41 = (2mw0,oo). Now
(4.20) f(2) = fo(2) + f1(z) + f2(2).
where fo. f1. and f» are defined by the formulae
(4.21) |
fte) = [ wtwide. i) = > [ petwrdn, gt = )

We will now choose wg and m so that f, and f, can be ignored and then use Lemma
3.5 to approximate fi. Using (4.10) and (4.12) and taking wo sufficiently small we
have, for some constant c, independent of v,

oV 3ey 2lv] fwo -1, Co 3e 2|
(4.22) |fo(z)| < w(z) /o w1y < m—zm(4wo) :

Hence. a choice of
(4.23) wg = Oy ¢ 5 0,

suffices to guarantee
(4.24) [fol=)] < Z1£(2)]

in the closed upper half-plane. Now using (4.11) and (4.12) and assuming m suffi-
ciently large we have. for some constant c3 independent of v,

c3lv| _ Co 2™
(4.25) [f2(2)] £ ——— we™ MWy < — 2 _omyy o=lv[2Mwo,
L+ [2l/Iv] Jom, 1+ {z[/|v|
From (4.23), choosing
- 1
(4.26) m > mg+ mp-— logl
vl e

for appropriate mg and m; independent of v and ¢ leads to

- €
(427) 5202 S 1)1
Finally, we apply Lemma 3.5 to the approximation of fi. The error involves the
function Fy = [ |Im(u,)|/(ir + z)dr, but we note that |Fi| = |fi]. Using p poles for
each j we produce a p - m-pole approximation g(z) with an error estimate, again for
Im(z) > 0, given by

5

(4.28) 1(z) —9(2)l < 55—

| f1(2)].
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A choice of

(4.29) : p= O(log %)

enforces |

(4.30) ORFIOIE=FHO!

By combining (4.24). (4.27). (4.30). and the triangle inequality, we obtain (4.16) with
the number of poles. d = p - m. satisfying the stated bound. O )

The case v = 0 requires special treatment. First. the direct application of the
preceding arguments leads to a significantly larger upper bound on the number of
poles. Second, we note that uo(0) = 0. so that relative error bounds near z = 0
require a vanishing absolute error. Finally, the lack of regularity of ug(z) at = = 0
precludes uniform rational approximation. as discussed in (10]. Therefore. we relax the
condition Im(z) > 0 to Im(z) > n > 0. By (2.20) this will lead to good approximate
convolutions for times T < n~1.

LEMMA 4.4. There exists § > 0 such that for allz, 0 <& < 1/2 and . 0 < N <
1/2. the function f(z) = uo(2) — iz +1/2 admits an approzimation g(z) that is a sum
of d <6 (log(1/n) +loglog(1/e)) - log(1/e) poles. with

(4.31) 1f(z) —g(z)| <e-|f(2)],
provided Im(z) > 7.
Proof. Note that since ug(z) has no poles, f(z) is given by (4.14) and satisfies
(4.15). Define intervals
L=(@ ' =1)n.(2 = 1)p) forj=1..... m. Imyr = (2™ = 1)n. oc).
Now

(4.32) f(2) = fi(2) + fa(2),

where f; and f; are defined by the formulae

(4.33)  fi(z _—.Z/ Im(uo(re™ %)) . fg(z)=/1 Im(uo(re=™/2))

r+z r—+z

We will now choose m so that f; can be ignored and then use Lemma 3.5 to approxi-
mate fi. Using (4.11) and assuming m sufficiently large we have, for some constant c,

c e c m
4.34 2)| < re” dw < 2m=lpe=2"n,
sy e sy [ S EL

Hence, choosing
(4.35) m > mo(log(1/n) + loglog(1/¢))

for appropriate mo independent of 7 and ¢ leads to

(4.36) |f2(2)] <
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Finally, we apply Lemma 3.5 to the approximation of f;. Using p poles for each j we
produce a p - m-pole approximation g(z) with an error estimate for Im(z) > 7 given
by :

(437) A=) - 9()| £ 5 A()
A choice of
1
(4.38) D= O(log :)
enforces
(439 72(2) - 9(2)] < SIS ).
By (4.36). (4.39). and the triangle inequality, (4.31) is achieved with the number of
poles. d = p - m, satisfying the stated bound. 0

We now consider the contribution of the poles.
LEMMA 4.5. There ezist constants Cp, Ci, 6 > 0 such that for all v,e € R with
2< vl and 0 < £ < 1/2 the function

N, h
4.40 h(z) = =
(4.40) (=)
n=1 !
where by, ..., hy N, are the Toots of H,El), satisfies the inequalities

Chlv| Calv|

(4.41) T3 2/ < |h(2)] < Tz

and admits an approzimation g(z) that is a sum of d < §-log |v| - log(1/¢) poles, with
(1.42) k(=) - g(2)] < € |h(2)],

provided Im(z) > 0.

Proof. The curve C defined in Lemma 3.2, near which h,,/|v],..., hun,/|v| lie,
1s contained in disks separated from the real axis. If we denote the disk of radius r
centered at ¢ by D(r.c), then the disks

(4.43) {D(—Im(z).z), zeC largz—7/2|=7n/2+ 72", n=1,2,... },

for example, contain C\{+1,-1}. From (3.31), the root h, ; closest to the real axis
satisfies

al\/§

(444) arg hl/.l ~ 24/3 [_2/3;

v

hence it is contained in a disk of (4.43) with n ~ log, (24733121 (~a;)~1|v|?/3), and
all of the roots are contained in O(log |v]) of the disks. Now applying Lemma 3.4 we
obtain (4.42) with |h| replaced by [H| = | 3 |hyn|/(z = hy.n)|. To obtain the upper
bound in (4.41) for both h and H we note first that it is trivial except for |z/v| ~ 1.
A detailed analysis of the roots as described by Lemma 3.2 shows that

(4.45) [Im(h, ;)| > cj?/3v)V/3,
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Hence. for |z/v] = 1,

lv]

(1.46) > |2 < cppr 70 < s,
i T j=1

J

The lower bound in (4.41) is again obvious except for |z/v| ~ 1. Then, however. we
note that

(4.47) h(z) = u,(z) —iz + 1/2 — f(z).

Since, from (3.26). |u,(z)| = O(|v|*/3) for |z/v] ~ 1 and [f(z)] = O(1) by (4.15) the
right-hand side is dominated by —iz and |h(z)] = O(jv]). - O

The combination of Theorem 4.1 and Lemmas 4.3 and 4.5 suffices to prove our
principal analytical result.

THEOREM 4.6. Given vy > 0 there exists § > 0 such that for all v € R. v > vy,
and 0 < € < 1/2 there exists d with

(4.48) d < 6(log|v| - log(1/¢) +log® |v| + |v| ! log?(1 /e)),
and complex numbers ay,...,aq and By. ..., B4. depending on v and €, such that the
function
1 d Qn
(4.49) Uyel(z) =iz — 5+ nz::l pa—c

approzimates u, (z) with the bound
(4.50) Ju,(2) - Uye(z)] < e- ]uy(z)f

provided that Im(z) > 0. Furthermore

(4.51) (/_x luy (z) — U.,.E(x)|2d1>

Proof. We first note the lower bound

2

<e- (/_ |u,,(r)—i:r+1/2]2dr) .

1/2

(4.52) Juy(2) =iz +1/2| > T

For v > 0 the function is nonvanishing and has the correct asymptotic behavior, so
we need only consider the case of |v| large. The result then follows from (3.26). This
proves (4.51) and (4.50) with u, replaced by u, — iz 4+ 1/2 on the right-hand side.
From (3.26) we have

(4.53) Iu,,(z) —iz+1/2l §c|u|1/3|u,,(z)|,

so that the final result follows from the scaling ¢ — Ju|~1/3¢. 0

The number of poles in (4.48) required to approximate u,(z) to a tolerance
¢ depends on both € and v. The asymptotic dependence on ¢ is proportional to
[v|~1log®(1/e). We will see in the numerical examples, however, that this term is im-
portant only for small |v|; otherwise the dominant term is the first, for an asymptotic
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dependence of O(log|v|-log(1/¢)). As we generally have = <« |v|~! in practice. the
term log? |v| is of less importance.

Similarly. Lemma 4.4 leads to the following theorem for v = 0.

THEOREM 4.7. There ‘exists & > 0 such that for all s, 0 < = < 1/2 and 7.
0 <7 < 1/2 there exists d < 6 - (log(1/n) - log(1/¢) + loglog(1/e) + log log(1/7))

and complex numbers ay,...,aq and B3y,..., B4, depending on n and €, such that the
function
1 < a
. . _ 1 n
(4.54) Uoe(z) =iz~ 5 Zl =

approximates ug(z) with the bound
(4.55) |uo(z) = Un.e(2)] < & uo(2)],

provided that Im(z) > 1. Furthermore
o 1/2
(4.56) (/ luo(z +1n) — Up.e(z + in)!2d1>

- 1/2
(/ [u,,(x+in)——i:r+n+1/2'2dz> .

—-0oC

<

(l)

Proof. Again we already have (4.55) with uo(z) — iz +1/2 on the right-hand side.
By (3.24) we find

(4.57) luo(2) —iz +1/2| < clog(1/n)|uo(z)|.

The theorem follows from the scaling ¢ — log™!(1/n)e. o

As we must take 7 = T, we see that the number of poles required may grow
like log(1/¢) -log T + log T - loglog T. However, this is only for the mode n = 0 in the
two-dimensionsal case. In short, the T dependence is insignificant in practice.

5. Computation of the rational representations. Analytical error bound
estimates developed in the previous sections are based on maximum norm errors
as in (2.19) and (2.20). In numerical computation it is often convenient, however, to
obtain least squares solutions. Our method of computing a rational functlon U, that
satisfies (4.50) is to enforce (4.51). An alternative approach would be to use rational
Chebyshev approximation as developed by Trefethen and Gutknecht (24, 25, 26].

In the numerical computations, we work with

(5.1) Uy(2) = uy(2) — iz +1/2

and its sum-of-poles approximation UU.E(z) = U,e(2) — iz + 1/2. In particular, we
have the nonlinear least squares problem

. [T Pz) . 2
(5.2) min /_oo ‘Q(x) — U, (z)| dz
for P,Q polynomials with deg(P) + = deg(Q) = d. Problem (5.2) is not only

nonlinear, but also very poorly condltloned when P,Q are represented in terms of
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their monomial coefficients. We apply two tactics for coping with these difficulties:
linearization and orthogonalization.

We linearize the problem by starting with a good estimate of Q and updating
P, Q iteratively. In particular. we solve the linear least squares problem

oc p(i-é-l)(x) Q(i+1)(1‘) i )
/—oc QWi(z)  QW(z) u,(7)| dz.

(5.3) min
P(!—l).Q(i—l)

where the integral is replaced by a quadrature. The initial values P(®). Q(© are
obtained by exploiting the asymptotic expansion (3.25) and the recurrence (3.28).
We find that two to three iterations of (5.3) generally suffice.

The quadrature for (5.3) is derived by first changing variables,

oc T/2 m
(5.4) / f(z)dr = f(tan#) sec® 6db ~ § w, f(tan§,) sec6,.
e -7 i=1

/2

where 6y,...,6,, and w; ..., w,, denote appropriate quadrature nodes and weights.
The transformed integrand is periodic on the interval [—7/2, 7/2]. so the trapezoidal
rule (or midpoint rule) is an obvious candidate. The integrand is infinitely continously
differentiable, except at § = 0, where its regularity is of order 2|v|. For lv| > 8 (say),
the trapezoidal rule delivers at least 16th-order convergence and is very effective.
For small [v|, however, a quadrature that adjusts for the complicated singularity at
¢ = 0 is needed. Here we can successively subdivide the interval near the singularity,
applying high-order quadratures on each subinterval (see, for example, [27]).

The quadrature discretization of (5.3) cannot be solved as a least squares problem
by standard techniques, due to its extremely poor conditioning. We avoid forming the
corresponding matrix; rather we solve the least squares problem by Gram-Schmidt
orthogonalization. The 2d + 1 functions

Id-—-l- d-1 d~

(5.5) u,, 1, z0,, z...., u,. 77, %4,

are orthogonalized under the real inner product

= R =
(5.6) (F, 0V =/ Mdl
- (1)
oo |QW(z)]
to obtain the orthogonal functions
Ilu(.'l'), i n= 1’
(5.7) gn(z) = { 1, ' n =2,
TGn—o(x) — Z;.n:’ri“’n_l} Cnj gn—j(z), n=3,...,2d +1,
where
(Tgn-2, gn—j)i n=3,...,2d+1,
5.8 Cnj = ——-=—, . ’ ’ ; ?
5 ’ (gn—js Gn—j)i J=1,...,min{4,n — 1},
Now

(5.9) G2a+1 = —PUHD 4 g, QU+Y),
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TABLE 1
Number d of poles to represent the Laplace transform of nonreflecting boundary kernels or and
wn. for various values of =.

e =10""%
On “Wn
n d n d =r
1 9 On wn
2 6 n d n d
3-6 5 0-5 n 141
-8 6 6-8 6 2 A
9-12 7 9-12 7 3 18
13-19 8 13-19 8 4 15
20-31 9 20-31 9 5 14
32-51 10 32-51 10 6 13
52- 86 11 52-86 11 —12 12
87- 147 12 | 87-147 12 13-14 13 0-13 n
148- 227 13 | 148-228 13 15-16 14 14-15 14
228- 401 14 | 220-402 14 17-18 15 16-18 15
402- 728 15 | 403-728 15 19-22 16 19-21 16
729-1024 16 | 729-1024 16 23-26 17 22-25 17
= 27-31 18 26- 30 18
£=10 32-37 19 31-36 19
In wn 38-45 20 37-44 20
n d n d 46-54 21 45-53 21
0 44 55- 65 22 54- 65 22
1 15 66-79 23 66- 79 23
2 9 80- 97 24 80-96 24
3-8 7 0-7 n 98-118 25| 97-118 25
9-10 8 8-10 8|l 119-145 26 | 119- 144 26
11-14 9 1114 9 )| 146-177 27 | 145-176 27
15-20 10 1519 10 || 178-216 28 | 177- 216 28
21-28 11 20-28 11 || 217-265 29 | 217-264 29
20-41 12 29~40 12 || 266-324 30 | 265-324 30
42-358 13 41-37 13 || 325-307 31 | 325- 396 31
59-84 14 58-83 14 || 308-486 32 | 397485 32
85-123 15 84123 15 || 487-595 33 | 486-3594 33
124~ 183 16 124- 183 16 506- 728 34 505~ 727 34
184- 275 17 184- 275 17 799- 890 35 798— 890 35
276- 418 18 | 276-418 18 || 891-1024 36 | 891-1024 36
419- 638 19 | 419- 637 19
639- 971 20 | 638-971 20
972-1024 21 | 972-1024 21

so PO and QU+D are computed from the recurrence coefficients cnj by splitting
(5.7) into even- and odd-numbered parts.

For some applications, including nonreflecting boundary kernels, it is convenient
to represent P/Q as a sum of poles,

Pz) & an
(5.10) )_Zz_ﬁn.

3
—

We compute fi,..., 84 (zeros of Q) by Newton iteration with zero suppression (see,
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TABLE 2
Laplace transform of cylinder kernel o, defined in (2.13). approrimated as a sum of d poles.
forn=1,..., 4 and e = 1076,

Pole Coefficient Pole Location
n d Re Im Re Im

9 ~ 0.426478E — 02 0.000000E + 00 | —0.368403E + 01 0.000000F + 00
—0.416235E — 01 0.000000FE + 00 | —0.205860F + 01 0.000000E + 00
—0.122665E + 00 0.000000FE + 00 | —0.118994E + 01 0.000000F + 00
—0.143704F + 00 0.000000E + 00 | —0.717370F + 00 0.000000E -+ 00
—0.530662F — 01 0.000000E + 00 | —0.423506E + 00 0.000000EF + 00
—0.863872F — 02 0.000000E + 00 | —0.223111F + 00 0.000000E + 00
—0.961472F — 03 0.000000E 4+ 00 | —0.103710F + 00 0.000000F + 00
—0.721548F — 04 0.000000E + 00 | —0.409342F — 01 0.000000F + 00
—0.250102F — 05 0.000000E' + 00 | —0.117156E — 01 0.000000F + 00

0.218164FE — 01 0.000000F + 00 | —0.333263E + 01 0.000000E + 00
0.860648E + 00 0.000000E + 00 | —0.162945E + 01 0.000000F + 00
~0.138934F + 01 0.162069E + 00 | —0.125843E + 01 0.412637E + 00
—0.138934E' + 01  —0.162069F + 00 | —0.125843E + 01 —0.412637E + 00
0.209905E — 01 0.000000E + 00 | —0.612710F + 00 0.000000F + 00
0.232032F — 03 0.000000F 4+ 00 | —0.240327F + 00 0.000000E + 00

3 5 —0.179277E + 00 0.000000E + 00 | —0.309775F + 01 0.000000E + 00
—0.168335E + 01 0.129111E + 01 | —0.167998E + 01 0.130784F + 01
—0.168335E' + 01  —0.129111E +01 | —0.167998E + 01  —0.130784E + 01
—0.816322F + 00 0.000000E + 00 | —0.187260F + 01 0.000000E" + 00
—0.126962F — 01 0.000000E + 00 | —0.950854F + 00 0.000000F + 00

4 5 — 0.197725E + 01 0.220886E + 01 | —0.197861F + 01 0.220444F + 01
—0.197725E + 01  —0.220886FE + 01 | —0.197861E + 01  —0.220444E + 01
—0.219247F + 01 0.216535E 4+ 01 | —0.282304EF + 01 0.382237E + 00
—0.219247E'+ 01  —0.216535E + 01 | —0.282304F + 01  —0.382237E + 00

0.464435E + 00 0.000000F + 00 | —0.201159F + 01 0.000000F + 00

o
o

for example, [28]) by the formula

(5)
(5.11) BU+Y = g _ Q(8+”) .
Q' (8Y)) - "i Q(87)
i = 8 - By
where f;,.... 8,1 are the previously computed zeros of Q. Then ay,. .., Qg are

computed by the formula o, = P(3,)/Q'(8,). The derivative Q'(z) is obtained by
differentiating the recurrence (5.7).

6. Numerical results. We have implemented the algorithm described in sec-
tion 5 to compute the representations of 0, and w, through their Laplace transforms.
Recall that for the cylinder kernels, ,,, we have v = n while for the sphere kernels, w,,
we have v = n + 1/2. Table 1 presents the sizes of the representations for ¢ = 1078,
1078, and 1075 in (4.51). For the cylinder kernels, which are affected by the branch
cut, the number of poles for small n is higher than for the sphere kernels. This dis-
crepancy, however, rapidly vanishes as n increases and the asymptotic performance
ensues. The log(1/¢€) dependence of the number of poles for n > 10 is clear.

For ¢ = 107% we have also computed the maximum norm relative errors which
appear in (2.19) by sampling on a fine mesh. For the cylinder kernel with n = 0,
we expect an O(1) error in a small interval about the origin due to (4.10). However,
errors of less than ¢ are achieved for |s| > 5 x 10~7. This implies a similar accuracy
in the approximation of the convolution for times of order 108. For all other cases the
maximum norm relative errors are of order «.
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Finally. Table 2 presents poles and coefficients for the cylinder kernels for n =
1,....4 and € = 107 to allow comparison by a reader interested in repeating our cal-
culations. Note that the pole locations are written in terms of s = z/i. Extensive ta-
bles will be made available on the Web at http://math.nist.gov/mesd/Staff/BAlpert.

Remark. Our approximate representation of the nonreflecting boundary kernel
could be used to reduce the cost of the method introduced by Grote and Keller [8]. The
differential operators of degree n obtained in their derivation need only be replaced by
the corresponding differential operators of degree logn for any specified accuracy. It
is interesting to note that in the two-dimensional case, where the approach of [8] does
not apply. the analysis described above can be used to derive an integrodifferential
formulation in the same spirit.

7. Summary. In this paper we have introduced new representations for the
logarithmic derivative of a Hankel function of real order, that scale in size as the
logarithm of the order. An algorithm to compute the representations was presented
and our numerical results demonstrate that the new representations are modest in
size for orders and accuracies likely to be of practical interest.

The present motivation for this work is the numerical modeling of nonreflect-
ing boundaries for the wave equation, discussed briefly here and in more detail in
[18]. Maxwell’s equations are also susceptible to similar treatment as outlined in [29].
The new representations enable the application of the exact nonreflecting boundary
conditions, which are global in space and time, to be computationally effective.

8. Appendix: Stability of exact and approximate conditions. In this ap-
pendix, we consider the stability of our approach to the design of nonreflecting bound-
ary conditions. Given that we are approximating the exact conditions uniformly, it
is natural to expect that our approximations possess similar stability characteristics.
This is. indeed. the case. Oddly enough. however, the exact boundary conditions
themselves do not satisfy the uniform Kreiss-Lopatinski conditions which are neces-
sary and sufficient for strong well-posedness in the usual sense [30]. This may seem
paradoxical since the unbounded domain problem itself is strongly well-posed. The
difficulty is that the exact reduction of an unbounded domain problem to a bounded
domain problem gives rise to forcings (inhomogeneous boundary terms) which live in
a restricted subspace. The Kreiss-Lopatinski conditions, on the other hand, require
bounds for arbitrary forcings. In that setting, our best estimates result in the loss of
1/3 of a derivative in terms of Sobolev norms. In practice we doubt that this fact is
of any significance, and have certainly encountered no stability problems in our long
time numerical simulations.

To fill in some of the details, consider a spherical domain  of radius one, within
which the homogeneous wave equation with homogeneous initial data is satisfied. At
the boundary we have

(8.1) ﬁnm +gnma

where €, = 0 for the exact condition and is uniformly small when we use our approx-
imations. Here §n is the spherical harmonic transform of an arbitrary forcing g.
Following Sakamoto, we seek to estimate

62w = [ (1l + et + | 2000, )
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where
(33) 0= [ (£ +1V17).
while || - |lo.o denotes the usual L, norm. On the boundary. 8Q. we will make use

of fractional Sobolev norms. most easily defined in terms of the spherical harmonic
coefficients:

(8.4) Il on = (1+n%)| faml.

n.m

Strong well-posedness would follow from showing that

T
(8.5) Hiw) < c / (- )2 et

Instead, we can show that

(8.6) H(u) < C/OT llg(- )13 /3,004t
To prove this. let s = iz and note that
(8.7) kn(s) o REV(2) x 2" V2HV(2), v=n+
Bounded solutions within the sphere are given by
(8.8) Unm(r, 8)  jn(rz) o (r2)"V2J,(r2).

Precisely, setting

(8.9) Unm (T, 8) = Anm(2)(rz) Y20, (rz),
we find
(8.10) Anm(2) = = 222 H D)8, () (2).
where

- , (1)
(8.11) 6, = (1'— (=) (HY'(2) - H"ﬁ))

We now estimate norms of the solution. First note that the products in the definition
of 6,, J,,(z)H,El)(z), zJ,,(z)HlEI)I(z), are uniformly bounded for Im(z) > 0. (See the
limits = — 0. 2z — o, and v — oc.) Therefore. as mentioned above, the error term,
so long as it’s small, has no effect on the estimates we derive, and we simply ignore
it. That is. we set §,, = 1.

We concentrate on the boundary terms in H, as they are both the most straight-
forward to compute and the most ill behaved. In transform space we have

(8.12) (14 1) (1. )[* + |5t (1, 8)[2 < 32(2)|Gnm(2)]7,
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(8.13) 1o(2) = [HO () (1 L(2) + 2212

(Here and throughout, ¢ will denote a positive constant independent of all variables.)
We first note that as the only singularities of Bessel functions occur at zero and
infinity. we need only consider the limits z — 0. z — oc, and v — oc. The first two
are straightforward:

(8.14) 1o(z) = TP (v)(2/2)™% (V3 (2/2)* /T3 v + 1)) =¢, z—0,

v

(8.15) ~2(z2) = ¢|z| ! (V2|7  cos? z + |z| sin? z) mesin®z, z — o

For large v we use the uniform asymptotic expansions of Bessel functions due to Olver
[20]. which vield

(8.16) supv2(z) = O(v¥/3).

From Parseval’s relation, we conclude that

0.00

(8.17) /OT <||u(-,7s)||§aQ + H%(J)Hz ) dt < c/OT lg( )13 /3. a0dt.

The estimation of the spatial integrals is more involved, as for » < 1 the solution has
two transition zones, z ~ v and rz = v, and there are a number of cases to consider.
However, the estimates follow along the same lines and lead to the same result.

It is interesting to note that the loss-of-derivative phenomenon is suppressed when
one looks at the error due to the approximation of the boundary condition. In that
case the transform of the exact solution near the boundary is

A (rz)

(8.18) Ty

&Tlm(lf S)»

so that the error, e, satisfies the problem above with §,,, given by

zhsll)l(z) . .
Wunm(l, S) = fnun(z)unm(l, S).

Now the best estimate of u,, takes the form

(819) gnm = €n

(8.20) C mml < cllzl+v),

which, in combination with (8.6), would lead to an estimate of the l-norms of the
error in terms of the 4/3-norms of the solution. However, using again the large v
asymptotics, a direct calculation shows

(8.21) lenyl < ell2] + ). w

Thus u, is smaller than its maximum by O(v~1/3) in the transition region where
Y = O(v}/3). Hence we find for the error

(8.22) H(e) < csup |en|2/OT (Ilu(~,t)ll?.m + H%(ut)“zm) dt
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In other words. the 1-norms of the error are controlled by the 1-norms of the solution.

We have, of course. ignored discretization error. which could conceivably cause

difficulties in association with the lack of strong well-posedness. To rule them out
would require a more detailed analysis. In practice we have encountered no difficulties.
even for very long time simulations. We should also note that strong well-posedness
could be artificially recovered by perturbing the approximate conditions for large n.
allowing high accuracy to be maintained for smooth solutions. Finally, we note that
a similar analysis can be carried out in two dimensions.
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GENERALIZED GAUSSIAN QUADRATURES AND SINGULAR
VALUE DECOMPOSITIONS OF INTEGRAL OPERATORS*

N. YARVINt AND V. ROKHLIN'

Abstract. Generalized Gaussian quadratures appear to have been introduced by Markov late
in the last century and have been studied in great detail as a part of modern analysis. They have
not been widely used as a computational tool, in part due to an absence of effective numerical
schemes for their construction. Recently, a numerical scheme for the design of such quadratures was
introduced by Ma et al.; numerical results presented in their paper indicate that such quadratures
dramatically reduce the computational cost of the evaluation of integrals under certain conditions.
In this paper, we modify their approach, improving the stability of the scheme and extending its
range of applicability. The performance of the method is illustrated with several numerical examples.

Key words. quadratures, singular value decompositions, Chebyshev systems, fast algorithms
AMS subject classifications. 65D32, 47G10

PII. S1064827596310779

1. Introduction. Generalized Gaussian quadratures appear to have been intro-
duced by Markov [11, 12] late in the last century. More recent expositions include
those by Krein [9] and Karlin and Studden [8]. Those expositions contain proofs of
the existence of such quadratures for wide classes of functions; however, they do not
describe a numerical procedure for obtaining the quadrature weights and nodes.

Recently, a paper by Ma, Rokhlin, and Wandzura [10] described a numerical
algorithm for obtaining such quadratures. In [10], a version of Newton’s method
is introduced for the determination of nodes and weights of generalized Gaussian
quadratures. The procedure of [10] guarantees the convergence of the Newton algo-
rithm provided it is started sufficiently close to the solution (whose existence is proven
in [11, 9, 8]) and utilizes a continuation procedure to provide such starting points.
The present paper describes a variation of that algorithm, which consists mainly of
two major changes. The first change is that an entirely different continuation scheme
is used; with the new continuation scheme, the algorithm is considerably more robust.
The second change is the addition of a preprocessing step which, given as input a large
class of functions, uses the singular value decomposition (SVD) to produce a set of
basis functions suitable for the algorithm.

Since a substantial fraction of the algorithm is changed, this paper is written as a
repetition of [10], rather than as a list of changes; however, the portions dealing with
quadratures for functions with end-point singularities are omitted.

This paper is organized in the following manner. Section 2 summarizes the neces-
sary material from [9] and [8]. Section 3 briefly describes certain standard numerical
tools used by the algorithm. Section 4 contains various analytical results to be used in
the construction of the algorithm. Section 5 describes the algorithm in detail. Finally,
section 6 contains several numerical examples.
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2. Mathematical preliminaries.

2.1. Chebyshev systems.

DEFINITION 2.1. A sequence of functions ¢y,...,¢, will be referred to as a
Chebyshev system on the interval [a,b] if each of them is continuous and the deter-
minant

¢1(zy) -+ ¢1(zn)
(1) : :
$al(z1) -+ On(zn)

is nonzero for any sequence of points xy,...,T, such thata <z; <zp--- <z, <b.

An alternate definition of a Chebyshev system is that any linear combination of
the functions with nonzero coefficients should have no more than n zeros.

A related definition is that of an extended Chebyshev system.

DEFINITION 2.2. Given a set of functions ¢1,...,¢, which are continuously
differentiable on an interval [a,b], and given a sequence of points 1, ...,z, such that
a<z)<z3 < <3,y < b, let the sequence my, ..., my, be defined by the formulae

m1=0,
@) mj =Q z:f,y:> landz; # z;,,
mj=j—1 ifj>landz;=z;_y=--- =14,
m; =k fj>k+landz;=z;_1= =zj_k # Tj—k_1.

Let the matriz C(zy,...,T,) = [ci;] be defined by the formula

d™ig;
(3) Cij = d_'z;mj (IJ’),
in which %’&(zj) is taken to be the function value ¢;(z;). Then ¢1,..., ¢, w